首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二次曲面的方程x2+3y2+z2+2axy+2xz+2yz=4经正交变换化为y12+4z12=4,则a=________。
若二次曲面的方程x2+3y2+z2+2axy+2xz+2yz=4经正交变换化为y12+4z12=4,则a=________。
admin
2019-03-23
75
问题
若二次曲面的方程x
2
+3y
2
+z
2
+2axy+2xz+2yz=4经正交变换化为y
1
2
+4z
1
2
=4,则a=________。
选项
答案
1
解析
本题等价于将二次型f(x,y,z)=x
2
+3y
2
+z
2
+2axy+2xz+2yz经正交变换后化为f=y
1
2
+4z
1
2
。由正交变换的特点可知,该二次型的特征值为1,4,0。由于矩阵的行列式值是对应特征值的乘积,且该二次型的矩阵为A=
,可知|A|= —(a—1)
2
=0,解得a=1。
转载请注明原文地址:https://www.kaotiyun.com/show/LHV4777K
0
考研数学二
相关试题推荐
设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵,其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
A是3阶矩阵,α是3维列向量,使得P=(α,Aα,A2α)可逆,并且A3α=3Aα-2A2α.(1)求B,使得A=PBP-1.(2)求|A+E|.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设①a,b取什么值时存在矩阵X,满足AX-CX=B?②求满足AX-CX=B的矩阵X的一般形式.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
设A是m×n矩阵,将A的行及列分块,记成对A作若干次初等行变换后,记成则下列结论中错误的是()
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。时,求。[im
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1,则正确的是(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(-1)f"(x)-xf’(x)=ex-1,则下列说法正确的是(A)f(0)
随机试题
Theslaverywaslegallyabolishedin1865by______amendment.()
肥胖病人穿刺建立气腹时,哪项是正确的
遗精的发病机制,主要责之于癃闭的发病机制,主要责之于
在下列采取的混凝土防裂缝技术措施中,不属于设计措施的是()。
柴油发电机房内设置储油间时,其总储存量不应大于1m3,储油间应采用耐火极限不低于()h的防火隔墙与发电机间分隔。
2008年1月1日实施的新《企业所得税法》规定国家需要重点扶持的高新技术企业,企业所得税按()的税率征税。
“玉嶂参天,一径苍松近自雪;金沙铺地,千层碧水走黄龙。”对联题写在()。
晚清时期第二次西学东渐,西方近代技术不断由上海传入中国,上海成了我国近代科学技术的策源地。有许多翻译出版机构翻译出版西方的科学技术书籍,传播西方科学技术。当时翻译西方科技书籍最多的翻译出版机构是()。
___________是学校中物质文化、制度文化、精神文化的统一体,是经过长期的实践而形成的。一旦形成往往代代相传,具有不易消散的特点。
∫(1-1/x2)ex+1/x+2dx=________.
最新回复
(
0
)