首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( )。
已知向量组α1,α2,α3,α4线性无关,则下列向量组中线性无关的是( )。
admin
2015-11-16
62
问题
已知向量组α
1
,α
2
,α
3
,α
4
线性无关,则下列向量组中线性无关的是( )。
选项
A、α
1
+α
2
,α
2
-α
3
,α
3
-α
4
,α
4
+α
1
B、α
1
+α
2
,α
1
-2α
3
,α
1
+α
2
-α
3
,5α
2
+α
3
C、α
1
+α
2
+α
3
,α
1
-α
2
+α
3
,α
1
+3α
2
+9α
3
D、α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
答案
D
解析
解 因为
(α
1
+α
2
)-(α
2
-α
3
)-(α
3
-α
4
)-(α
4
+α
1
)=0,
所以向量组(A)线性相关。
若令
β
1
=α
1
+α
2
, β
2
=α
1
-2α
3
, β
3
=α
1
+α
2
-α
3
, β
4
=5α
2
+α
3
。
则β
1
,β
2
,β
3
,β
4
可由α
1
,α
2
,α
3
线性表示,即多数向量可由少数向量线性表示。因此β
1
,β
2
,β
3
,β
4
线性相关,即向量组(B)线性相关。
关于(C),由α
1
,α
2
,α
3
,α
4
线性无关知,α
1
,α
2
,α
3
线性无关,若令
β
1
=α
1
+α
2
+α
3
, β
2
=α
1
-α
2
+α
3
, β
3
=α
1
+3α
2
+9α
3
,
则 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]
。
因为
是范德蒙行列式,不为0,所以
r(β
1
,β
2
,β
3
)=r(α
1
,α
2
,α
3
)=3,
即向量组(C)线性无关,故仅(C)入选。因
[α
1
+α
3
,α
2
+2α
3
+α
4
,α
1
+2α
3
+α
4
,α
2
+3α
3
+2α
4
]
=[α
1
,α
2
,α
3
,α
4
]
而右边行列式等于0,故(D)中向量组线性相关。
转载请注明原文地址:https://www.kaotiyun.com/show/LFw4777K
0
考研数学一
相关试题推荐
设A=,求A的特征值,并证明A不可以对角化.
已知X与Y服从相同的分布,且P{|X|=|Y|}=0,X的概率分布为(1)求X与Y的联合概率分布;(2)问X与Y是否不相关?
求幂级数的收敛域和和函数.
设f(x)=(1-|t|)dt(x>-11),求曲线y=f(x)与x轴所围成的平面区域的面积.
已知(1,-1,1,-1)T是线性方程组的一个解,试求(1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(2)该方程组满足x2=x3的全部分.
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=________.
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设A是三阶矩阵,其三个特征值为-1/2,1/2,1,则|4A+3E|=________.
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值。其对应的特征向量为α3,下列向量中是A的特征向量的是().
一质点从时间t=0开始做直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零,证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
随机试题
20世纪初,在资产阶级民主革命思想传播中发表《驳康有为论革命书》的是()
上至于头。下至于足,贯穿全身的经脉是
关于免疫的概念,正确的说法是
A.后溪B.太冲C.风门D.曲池E.阴陵泉
治疗痰饮脾阳虚弱证宜选用()治疗悬饮阴虚内热证宜选用()
某项目建设期3年,共贷款1000万元,第一年贷款200万元,第二年贷款500万元,第三年贷款300万元,贷款在各年内均衡发生,贷款年利率为7%,建设期内不支付利息,建设期利息为()。
某高土石坝坝体施工项目,业主与施工总承包单位签订了施工总承包合同,并委托了工程监理单位实施监理。施工总承包完成桩基工程后,将深基坑支护工程的设计委托给了专业设计单位,并自行决定将基坑的支护和土方开挖工程分包给了一家专业分包单位施工。专业设计
某施工企业编制抹灰人工定额,该企业有6年同类工程的施工工时消耗资料,则编制人工定额适合选用的方法是()。
为避免误机,离开当天不要安排旅游团到地域复杂、偏远的景点参观游览,安排自由活动要预留充足的时间。()
下列说法有错误的是()。
最新回复
(
0
)