首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3,β1线性相关,向量组α1,α2,α3,β2线性无关,则对于任意常数k,必有( ).
设向量组α1,α2,α3,β1线性相关,向量组α1,α2,α3,β2线性无关,则对于任意常数k,必有( ).
admin
2022-01-05
69
问题
设向量组α
1
,α
2
,α
3
,β
1
线性相关,向量组α
1
,α
2
,α
3
,β
2
线性无关,则对于任意常数k,必有( ).
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关
答案
A
解析
可用线性无关的定义证明.由于k为任意常数,令k取某些特殊值也可用排错法判别.
解一 对于任意常数k,证明(A)成立.设
l
1
α
1
+l
2
α
2
+l
3
α
3
+l
4
(kβ
1
+β
2
)=0
下证l
4
=0.若l
4
≠0,则kβ
1
+β
2
可由α
1
,α
2
,α
3
线性表示,由题设知β
1
能由α
1
,α
2
,α
3
线性表示,因而β
2
能由α
1
,α
2
,α
3
线性表示.这与α
1
,α
2
,α
3
,β
2
线性无关相矛盾,所以l
4
=0,则上述等式可化为l
1
α
1
+l
2
α
2
+l
3
α
3
=0.
而α
1
,α
2
,α
3
线性无关,故l
1
=0,l
2
=0,l
3
=0,所以α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关.故(A)正确.
解二 当k=0时,显然(B)、(C)不成立.
当k=1时,(D)不成立.事实上,由题设α
1
,α
2
,α
3
,β
2
线性无关,如果α
1
,α
2
,α
3
,β
1
+β
2
线性相关,而α
1
,α
2
,α
3
线性无关,β
1
,α
1
,α
2
,α
3
线性相关,则β
1
能由α
1
,α
2
,α
3
线性表示,而β
2
不能,于是β
1
+β
2
不能由α
1
,α
2
,α
3
线性表示,所以(D)不成立.仅(A)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/LER4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn是取自正态总体N(0,σ2)的简单随机样本,与S2分别是样本均值与样本方差,则
已知du(x,y)=(axy3+cos(x+2y))dx+(3x2y2+bcos(x+2y))dy,则()
若α1,α2,α3线性无关,那么下列线性相关的向量组是
若f”(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内()
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
设A=,若r(A*)=1,则a=()
已知随机变量X与Y有相同的不为零的方差,则X与Y相关系数ρ=1的充要条件是
已知向量组α1,α2,α3,α4线性无关,则命题正确的是
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解(一般解)是()
随机试题
为服务对象寻找有关的服务,如为弱智儿童寻找特殊学校,协助其接受文化教育,这种社区照顾的角色属于()。
空气滤清器对于发动机有什么样的重要性?
A.0.02%呋喃西林溶液B.2%苯氧乙醇溶液C.优琐尔(Eusol)D.3%氯化钠溶液E.凡士林纱布
门窗洞口上部有集中荷载的建筑不宜采用()。
为提高供水压力,在给水系统管路中安装多台水泵串联运行,则该供水系统的可靠性总是(),而且其寿命取决于该水泵的寿命。
狭义的民事诉讼当事人包括()。
已采用计算机替代手工记账的单位,其会计档案保管期限可以按照《会计档案管理办法》的规定执行。()
根据《UCP500》的规定,议付是指由议付行对汇票(或)和单据付出对价。只审单而不付出对价,不能构成议付。
合作剩余指合作者通过合作所得到的纯收益即扣除合作成本后的收益(包括减少损失额)与如果不合作或竞争所能得到的纯收益即扣除竞争成本后的收益(也包括减少损失额)之间的差额。根据上述定义,不属于合作剩余的是()。
你可以依赖于我的帮助。选作题Ⅱ:
最新回复
(
0
)