首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明: (Ⅰ)0≤∫axg(t)dt≤x-a,x∈[a,b]; f(x)dx≤∫abf(x)g(x)dx。
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明: (Ⅰ)0≤∫axg(t)dt≤x-a,x∈[a,b]; f(x)dx≤∫abf(x)g(x)dx。
admin
2018-04-14
70
问题
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:
(Ⅰ)0≤∫
a
x
g(t)dt≤x-a,x∈[a,b];
f(x)dx≤∫
a
b
f(x)g(x)dx。
选项
答案
(Ⅰ)因为0≤g(x)≤1,所以由定积分比较定理可知, ∫
a
x
0dt≤∫
a
x
g(t)dt≤∫
a
x
1dt, 即0≤∫
a
x
g(t)dt≤x-a成立,x∈[a,b]。 (Ⅱ)令F(x)=∫
a
x
f(t)g(t)dt-[*]f(t)dt,且F(a)=0。 F’(x)=f(x)g(x)-f[a+∫
a
x
g(t)dt]g(x) =g(x){f(x)-f[a+∫
a
x
g(t)dt]}, 由(Ⅰ)可知∫
a
x
g(t)dt≤x-a,所以a+∫
a
x
g(t)dt≤x。由f(x)是单调递增函数,可知 f(x)-f[a+∫
a
x
g(t)dt]≥0。 又因为0≤g(x)≤1,所以F’(x)≥0,即F(x)单调递增,所以F(b)≥F(a)=0,得证。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/L3k4777K
0
考研数学二
相关试题推荐
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
因为y=ex在实数域内严格单调增加,又在区间[-2,-1]上1≤-x3≤8,-8≤x3≤-1,所以在区间[-2,-1]上e≤e-x3≤e8,e-8≤ex3≤e-1<e,由定积分的性质知[*]
设曲线方程为γ=e-x(x≥0).(I)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
设函数z=z(x,y)由方程F(x-ax,y-bx)=0所给出,其中F(u,v)任意可微,则
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点叼,η∈(0,1),使得fˊ(η)fˊ(ζ)=1.
下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是().
设函数f(x)在(-∞,+∞)内有定义,xo≠0是函数f(x)的极大值点,则().
设z=f(2x-y,ysinx),其中f(u,v)具有连续的二阶偏导数,求
设f(x,y)=,则函数在原点处偏导数存在的情况是().
随机试题
许可协议
下列哪种肺炎为间质性肺炎:
与硬膜外麻醉相比,蛛网膜下腔麻醉的特点主要有()。
有机磷农药中毒的主要症状有
A.ABCB.LABC.BABD.直接法BASE.间接法BAS亲和素一生物素化酶复合物技术为
根据《增值税暂行条例》的规定,单位和个体经营者的下列行为中,()视同销售货物。
框架结构、剪力墙结构、大板结构的房屋新旧程度鉴定标准七成中的结构部分的标准为( )。
与反社会性人格障碍的特点不符合的是()。
去年底以来,押注人民币升值的“热钱”卷土重来,来势汹汹,但它们的估算很有可能再度落空。
Areportsaid______(这里只剩下不过30只野生老虎).
最新回复
(
0
)