首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明: (Ⅰ)0≤∫axg(t)dt≤x-a,x∈[a,b]; f(x)dx≤∫abf(x)g(x)dx。
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明: (Ⅰ)0≤∫axg(t)dt≤x-a,x∈[a,b]; f(x)dx≤∫abf(x)g(x)dx。
admin
2018-04-14
96
问题
设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1,证明:
(Ⅰ)0≤∫
a
x
g(t)dt≤x-a,x∈[a,b];
f(x)dx≤∫
a
b
f(x)g(x)dx。
选项
答案
(Ⅰ)因为0≤g(x)≤1,所以由定积分比较定理可知, ∫
a
x
0dt≤∫
a
x
g(t)dt≤∫
a
x
1dt, 即0≤∫
a
x
g(t)dt≤x-a成立,x∈[a,b]。 (Ⅱ)令F(x)=∫
a
x
f(t)g(t)dt-[*]f(t)dt,且F(a)=0。 F’(x)=f(x)g(x)-f[a+∫
a
x
g(t)dt]g(x) =g(x){f(x)-f[a+∫
a
x
g(t)dt]}, 由(Ⅰ)可知∫
a
x
g(t)dt≤x-a,所以a+∫
a
x
g(t)dt≤x。由f(x)是单调递增函数,可知 f(x)-f[a+∫
a
x
g(t)dt]≥0。 又因为0≤g(x)≤1,所以F’(x)≥0,即F(x)单调递增,所以F(b)≥F(a)=0,得证。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/L3k4777K
0
考研数学二
相关试题推荐
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
设其中g(x)是有界函数,则f(x)在x=0处().
设函数f(x)连续,则下列函数中,必为奇函数的是().
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为α.试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
已知函数y=f(x)的导数等于x+2,且x=2时y=5,求这个函数.
设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.已知曲线y=sinx在[*]上的弧长为l,试用l表示曲线y=f(x)的弧长s.
随机试题
Languagegamesareusuallyintendedtoencouragestudent______(interact).
设函数z=xe2y,则
脂质体制剂渗透泵制剂
甲、乙系初三学生,因涉嫌抢劫同学丙(三人均不满16周岁)被立案侦查。关于该案诉讼程序,下列哪些选项是正确的?(2015年卷二第74题)
石料洛杉矶磨耗试验,要求磨耗机的转速为30~33r/min,转数为500转。()
疫区来货到达口岸时,货主或代理人必须向检验检疫机关申报并提供所需资料、单证,主要有:报验员证或驾驶员培训合格证。( )
关于市场有效性的说法正确的是()。
A、 B、 C、 D、 C题干中四个图形中三角形与圆交替出现,所以排除A、D;题干中四个图形都是由3个部分构成的,所以选C。
符合结构化原则的三种基本控制结构是顺序结构、______________和循环结构。
UnderscoringtheimportanceofAsiatotheUnitedStatesinthenewcentury,HillaryClintonisbreakingwithtraditionasnew
最新回复
(
0
)