首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)内二阶可导,f(a)=A>0,f ’(a)<0,f"(x)≤0(x>a),则f(x)在[a,+∞)内( )。
设f(x)在[a,+∞)内二阶可导,f(a)=A>0,f ’(a)<0,f"(x)≤0(x>a),则f(x)在[a,+∞)内( )。
admin
2019-05-27
50
问题
设f(x)在[a,+∞)内二阶可导,f(a)=A>0,f ’(a)<0,f"(x)≤0(x>a),则f(x)在[a,+∞)内( )。
选项
A、无根
B、有两个根
C、有无穷多个根
D、有且仅有一个根
答案
D
解析
f(x)=f(a)+f ’(a)(x-a)+
,其中ξ介于a和x的之间。因为f(a)=A>0,
,所以f(x)在[a,+∞)上至少有一个根。由f"(x)≤0(x>a)→f ’(x)单调不增,所以当x>a时,f ’(x)≤f ’(a)<0→f(x)在[a,+∞)为单调减函数,所以根是唯一的,选D.
转载请注明原文地址:https://www.kaotiyun.com/show/KcV4777K
0
考研数学二
相关试题推荐
设A为三阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又α=且A*α=α.(Ⅰ)求正交矩阵Q;(Ⅱ)求矩阵A.
设,讨论当a,b取何值时,方程组AX=b易无解、有唯一解、有无数个解;有无数个解时求通解.
设(Ⅰ)当a,b为何值时,β不可由α1,α2,α3线性表示;(Ⅱ)当a,b为何值时,β可由α1,α2,α3线性表示,写出表达式.
设直线y=ax+b为曲线y=ln(x+2)的切线,若y=ax+b,x=0,x=4及曲线y=ln(x+2)围成的图形面积最小,求a,b的值.
设方程组有无穷多个解,α1=为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.求|A*+3E|.
两种证券A,B的收益率为rA和rB,人们常用收益率的方差来衡量证券的风险,收益率的方差为正的证券称为风险证券.如果A,B均为风险证券,且|ρAB|≠1,证明A与B的任意投资组合P(允许卖空)必然也是风险证券;若|ρAB|=1,何时能得到无风险组合?并构造相
变换二次积分的积分次序:。
把f(x,y)dxdy写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
设f(x)有二阶连续导数,且f(0)=0,f’(0)=一1,已知曲线积分∫L[xe2x-6f(x)]sinydx一[5f(x)-f’(x)]cosydy与积分路径无关,求f(x).
求极限。
随机试题
复方碘口服液的含量测定采用碘量法,首先测定的主要成分是
应用非甾体类消炎止痛药治疗骨性关节炎的原则是
枕骨大孔疝( )。库欣反应( )。
患者外感风寒,咽喉赤肿疼痛,吞咽困难,咽干,咳嗽。治疗应首选()
患儿男,6岁,急性肾炎,今晨突然出现呼吸困难,不能平卧,咳嗽,咳粉红色泡沫痰,尿量减少。护士在对其进行紧急护理时,与患儿的距离属于()
采取投资策略的企业,其人力资源管理策略表现为()。
社会治安综合治理是党和政府全面解决我国社会治安问题的战略方针,是公安工作党委领导的根本原则和()在新形势下的新发展。
天平对于()相当于()对于神圣
从20世纪90年代“人类基因工程”计划启动之日起,美国、日本和欧洲等展开了一场激烈的基因专利争夺战。因为谁拥有专利,就意味着谁就能在国际上获得_______基因产业的“王牌”,谁就能拥有今后基因开发的庞大市场。为此,美国等少数发达国家大量地将阶段性研究成果
1982年1月,ABC有限公司租给Chan一处房子,租期3年,月租金20000美元。1982年8月,Chan因失业想迁出。ABC有限公司口头同意将租金减半。1983年1月,Chan接到公司要求其支付跟从前一样多的租金的邮件。在合同终止前,Chan
最新回复
(
0
)