首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知抛物线y=aχ+bχ+c经过点P(1,2),且在该点与圆相切,有相同的曲率半径和凹凸性,求常数a,b,c.
已知抛物线y=aχ+bχ+c经过点P(1,2),且在该点与圆相切,有相同的曲率半径和凹凸性,求常数a,b,c.
admin
2016-10-21
105
问题
已知抛物线y=aχ+bχ+c经过点P(1,2),且在该点与圆
相切,有相同的曲率半径和凹凸性,求常数a,b,c.
选项
答案
圆[*]的半径为[*],所以在圆上任何一点的曲率为[*].由于点P(1,2)是下半圆上的一点,可知曲线[*]在点P(1,2)处为凹的,所以由[*]确定的连续函数y=y(χ)在P(1,2)处的)y〞>0.又经过计算,可知在点P(1,2)处的y′=1. 由题设条件知,抛物线经过点P(1,2),于是有 a+b+c=2. 抛物线与圆在点P(1,2)相切,所以在点P(1,2)处y′=1,即有2a+b=1.又抛物线与圆在点P(1,2)有相同的曲率半径及凹凸性,因此有 [*] 解得a=2,从而b=-3,c=2-a-b=3.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/KXt4777K
0
考研数学二
相关试题推荐
求下列的不定积分。
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an,为常数,且对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+…+nan|≤1.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.写出f(x)的带拉格朗日余项的一阶麦克劳林公式。
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a]求出使g(x)取最小值的x值。
某厂家生产的一种产品同时在两个市场进行销售,售价分别为p1和p2;销售量分别为q1和q2,需求函数分别为q1=24-0.2p1q2=10-0.05p2总成本函数为C=35+40(q1+q2)试问:厂家如何确定两个市场的售价,能使其获得总利润最大?最
如图,C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P分别引平行于x轴和y轴的直线,得两块阴影所示区域A,B,它们有相等的面积,设C的方程是y=x2,C1的方程是y=1/2x2,求曲线C2的方程.
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,销售量分别为q1,q2,需求函数分别为q1=24-0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
(2011年试题,三)如图1—3—2,一容器的内侧是由图中曲线y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成.(I)求容器的容积;(Ⅱ)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为1
(2007年试题,一)如图1—3—6所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设则下列结论正确的是().
随机试题
下面各项中,不是《中华人民共和国消费者权益保护法》立法目的的是()。
Whichdoordoesthiskey()to?
生产性噪声是由机器转动、气体排放、工件撞击、摩擦等产生的。生产性噪声可分为()三类。
如果提单是“CIF”贸易术语的合同的提单,则提单的运费栏中填写有“Freighttocollect”字样。()
对于基金监管“三公”原则,以下说法中正确的是()
企业有甲、乙两个辅助生产车间,按直接分配法核算辅助生产费用。5月份甲车间归集辅助生产费用108000元,分别向乙车间、基本生产车间和行政管理部门提供劳务400小时、4000小时和1400小时。则当月甲车间应向基本生产车间分配辅助生产费用()元。
甲公司是一家钟表企业,创立于十九世纪,一直被公认为是最好的钟表制造商之一。该公司在市场营销管理中强调生产优质产品,并通过由著名珠宝商店、大百货公司等构成的市场营销网络分销产品。二十世纪50年代之前,公司销售额始终呈上升趋势。但此后甲公司在本国市场上销售额和
商业银行最主要的负债是()。
幼儿园教师对本班工作全面负责,下列哪项属于幼儿园教师的职责()
UntilItookDr.Offutt’sclassinDeMathaHighSchool,Iwasanunderachievingstudent,butIleftthatclass【C1】______never
最新回复
(
0
)