首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2x12+ax22+2x32+2x1x2-2bx1x3+2x2x3经过正交变换化3y12+3y22。 求a,b的值;
设二次型f(x1,x2,x3)=2x12+ax22+2x32+2x1x2-2bx1x3+2x2x3经过正交变换化3y12+3y22。 求a,b的值;
admin
2019-12-24
88
问题
设二次型f(x
1
,x
2
,x
3
)=2x
1
2
+ax
2
2
+2x
3
2
+2x
1
x
2
-2bx
1
x
3
+2x
2
x
3
经过正交变换化3y
1
2
+3y
2
2
。
求a,b的值;
选项
答案
令A=[*],x=[*],则f(x
1
,x
2
,x
3
)=x
T
Ax,因为二次型经过正交变换化为3y
1
2
+3y
2
2
,所以矩阵A的三个特征值分别为λ
1
=3,λ
2
=3,λ
3
=0。根据矩阵特征值的和是矩阵的迹(对角元素的和),特征值的乘积是矩阵行列式的值,有: λ
1
+λ
2
+λ
3
=4+a=6,得a=2; λ
1
λ
2
λ
3
=|A|=-2(b+2)(b-1)=0,得b=-2或b=1。 因为当b=-2时,A=[*],因为 |3E-A|=[*]=-9≠0, 所以a=2,b=1。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/K1D4777K
0
考研数学三
相关试题推荐
设二元可微函数F(x,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数,而在极坐标系中可写成F(x,y)=,求二元函数F(x,y)。
若f’(cosx+2)=tan2x+3sin2x,且f(0)=8,则f(x)=_________________________。
设f(x)是(-∞,+∞)上连续的偶函数,且︱f(x)︱≤M当xε(-∞,+∞)时成立,则F(x)=是(-∞,+∞)上的()。
设总体X的概率分布为X~,其中参数θ未知且。从总体X中抽取一个容量为8的简单随机样本,其8个样本值分别是1,0,1,-1,1,1,2,1。试求:(Ⅰ)θ的矩估计值;(Ⅱ)θ的最大似然估计值;(Ⅲ)经验分布函数F8(x)。
设F(x)=,求F’(x)(x>-1,x≠0)并讨论F’(x)在(-1,+∞)上的连续性。
已知(X,Y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布.(I)求(X,Y)的联合密度函数f(x,y);(Ⅱ)计算概率P{X>0,Y>0},
设随机变量Y~E(1),且X与Y相互独立.记Z=(2X—1)Y,(Y,Z)的分布函数为F(y,z).试求:(I)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解.
用配方法化下列二次型为标准型(1)f(x1,x2,x3)=x12+2x22+2x1x2—2x1x3+2x2x3.(2)f(x1,x2,x3)=x1x2+x1x3+x2x3.
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)-1A是对称矩阵.
随机试题
2011年韩玉笙因盖房挖地基,发现一个瓦罐,内有500块银元及一块棉布,上面写着“为防日寇,特埋此。王天民,1938年7月5日”。王天民为王大水的爷爷,1938年7月8日被日寇杀害。该500块银元()
5岁男孩,7天前出现水肿,体检高度水肿,血压120/80mmHg,尿蛋白(+++),24/小时尿蛋白定量5.0g,尿沉渣RBC2~3个/HP,BUN5.4mmol/L。以下诊断中最可能的是
主产于甘肃的药材为
在主体建筑外加一圈围廊的做法在《营造法式》中称作()。
某建筑高度为42m,耐火等级为一级。地上10层,地下2层。一层到三层为商业部分,四层至十层为办公区域,地下第二层为汽车库,建筑内全部设置了自动喷水灭火系统,该建筑的办公区域和汽车库防火分区的最大允许面积分别为()。
对医患关系的理解,错误的是()。
教师在创设环境中的重要作用是()。
在母亲离开时无特别紧张或者忧虑的表现,在母亲回来时,欢迎母亲的到来,但这只是短暂的。这种孩子可能属于()依恋类型。
InmostAmericancities,thetentforaone-bedroomapartmentwas$250ormorepermonthinrecentyears.Insomesmallercities
Whenyouaremyourroom,leavethedoor______sothatyourvisitorsdonothavetoknock.
最新回复
(
0
)