首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 设a1=a3=k,a2=a4= —k(k≠0),并且β1=(—1,1,1)T和β2=(1,1,—1)T是两个解。求此方程组的通解。
设线性方程组 设a1=a3=k,a2=a4= —k(k≠0),并且β1=(—1,1,1)T和β2=(1,1,—1)T是两个解。求此方程组的通解。
admin
2019-03-23
128
问题
设线性方程组
设a
1
=a
3
=k,a
2
=a
4
= —k(k≠0),并且β
1
=(—1,1,1)
T
和β
2
=(1,1,—1)
T
是两个解。求此方程组的通解。
选项
答案
由题设条件,则此时方程组为 [*] β
1
和β
2
都是特解,β
1
—β
2
=(—2,0,2)
T
是导出组的一个非零解。由β
1
(或β
2
)是解看出k≠0,从而系数矩阵 [*] 的秩为2,因此可知导出组的基础解系由一个非零向量构成,则β
1
—β
2
是导出组的基础解系。于是通解为β
1
+c(β
1
—β
2
),c为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/JXV4777K
0
考研数学二
相关试题推荐
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
设B是3阶实对称矩阵,特征值为1,1,-2,并且α=(1,-1,1)T是B的特征向量,特征值为-2.求B.
设(1)问k为何值时A可相似对角化?(2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
设n阶矩阵A满足A4+2A3-5A2+2A+5E=0.证明A-2E可逆.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T.(1)求(Ⅰ)的一个基础解系;(2)a为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解
A=,r(A)=2,则()是A*X=0的基础解系.
已知齐次方程组同解,求a,b,c.
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
随机试题
我国资本市场包括()。
垄断的可能来源包括()
单子叶植物根及根茎断面有一圈环纹,它是
(2009年)两根梁长度、截面形状和约束条件完全相同,一根材料为钢,另一根为铝。在相同的外力作用下发生弯曲形变,二者不同之处为()。
某发电厂因生产需要购入一批危险化学品,主要包括氢气、液氨、盐酸、氢氧化钠溶液等,上述危险化学品的危害特性为()。
下列关于基金销售机构的职责规范,说法错误的是()。
吉州窑的窑址在________省的吉安,它鼎盛于________时期。
建设环境友好型社会,就是要以环境承载力为基础,以遵循自然规律为准则,以绿色科技为动力,倡导()和生态文明,构建经济社会环境协调发展的社会体系,实现可持续发展。
借助相应的神经过程所支配的骨骼肌肉运动来实现的一系列外显的动作活动方式是()。
Theevolutionofartificialintelligenceisnowproceedingsorapidlythat【C1】______theendofthecenturycheapcomputers【C2】__
最新回复
(
0
)