首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n(n≥4)维向量组(Ⅰ)α1,α2线性无关,(II)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.
已知n(n≥4)维向量组(Ⅰ)α1,α2线性无关,(II)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.
admin
2019-02-26
34
问题
已知n(n≥4)维向量组(Ⅰ)α
1
,α
2
线性无关,(II)β
1
,β
2
线性无关,且α
1
,α
2
分别与β
1
,β
2
正交,证明:α
1
,α
2
,β
1
,β
2
线性无关.
选项
答案
考察 k
1
α
1
+k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0. 两边分别对α
1
,α
2
作内积,由于(α
1
,β
1
)=0,(α
1
,β
2
)=0,(α
2
,β
1
)=0,(α
2
,β
2
)=0, 故得齐次方程组 [*] 由于方程组的系数行列式为 [*] =(α
1
,α
1
)(α
2
,α
2
)-(α
1
,α
2
)
2
, 根据柯西一施瓦兹不等式,当α
1
,α
2
线性无关时,有(α
1
,α
2
)
2
<(α
1
,α
1
)(α
2
,α
2
),故方程 组的系数行列式大于零(不等于零),方程组有唯一零解k
1
=k
2
=0,代入原式得 λ
1
β
1
+λ
2
β
2
=0. 由β
1
,β
2
线性无关,故λ
1
=λ
2
=0,从而k
1
=k
2
=λ
1
=λ
2
=0,故α
1
,α
2
,β
1
,β
2
线性无关.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/JF04777K
0
考研数学一
相关试题推荐
设由e-y+x(y一x)=1+x确定y=y(x),则y”(0)=______.
设讨论当a,b取何值时,方程组AX=b无解、有唯一解、有无数个解,有无数个解时求通解.
设函数f(x)在(-∞,+∞)上有定义,则下述命题中正确的是()
设离散型随机变量X只取两个值x1,x2,且x1<x2.X取值x1的概率为0.6.又已知E(X)=1.4,D(X)=0.24,则X的概率分布为()
设n元实二次型f(x1,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xx-1+an-1xn)2+(xn+anx1)2,其中a1,…,an均为实数。试问:当a1,…,an满足何种条件时,二次型f是正定的。
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,-2,4,0)T,又B=(α3,α2,α1,β-α4),求方程组Bx=3α1+5α2-α3的通解。
(2000年)微分方程xy"+3y′=0的通解为_____________。
设随机变量X的概率密度为f(x)=对X进行独立重复的观测,直到第2个大于3的观测值出现时停止。记Y为观测次数。(Ⅰ)求Y的概率分布;(Ⅱ)求E(Y)。
从数1,2,3,4中任取一个数,记为X,再从1,2,…,X中任取一个数,记为Y,则P{Y=2)=________。
随机试题
仲裁型质量监督包括【】
初孕妇,26岁。孕40周,近半月头痛、花,今晨出现剧烈头痛并呕吐2次来院就诊。最有参考价值的病史是
A.源皮距B.源限距C.源瘤距D.限皮距E.源轴距表示放射源中心到达体表照射中心的距离
医疗机构遴选和新引进抗菌药物品种
下列有机化合物中属于芳香族化合物的是()。
下列不属于技术措施的是()。
建设工程监理规范编写的依据包括( )。
【2012年济宁市市属真题】三个和尚没水吃的现象属于()。
泰山是世界文化与自然双重遗产,世界地质公园,全国重点文物保护单位,国家重点风景名胜区,国家5A级旅游景区。下列诗句描写泰山的是()。
Aroundtheworldyoungpeoplearespendingunbelievablesumsofmoneytolistentorockmusic.Forbesmagazineclaimsthat【31】le
最新回复
(
0
)