首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组 有解.(1)确定a、b的值;(2)求其导出组的基础解系,并用之表示原方程组的全部解.
设方程组 有解.(1)确定a、b的值;(2)求其导出组的基础解系,并用之表示原方程组的全部解.
admin
2018-08-03
67
问题
设方程组
有解.(1)确定a、b的值;(2)求其导出组的基础解系,并用之表示原方程组的全部解.
选项
答案
对方程组的增广矩阵施行初等行变换: [*] 由此可见,方程组有解→b—3a=0,2—2a=0.即a=1,b=3. 当a=1,b=3时,对矩阵B作初等行变换: [*] 由此得方程组的用自由未知量表示的通解为 [*](x
3
,x
4
,x
5
为自由未知量), 对应齐次方程组Ax=0的通解为 [*](x
3
,x
4
,x
5
为自由未知量) 由此得Ax=O的基础解系为 ξ
1
=(1,一2,1,0,0)
T
,ξ
2
=(1,一2,0,1,0)
T
,ξ
3
=(5,一6,0,0,1)
T
, 又原方程组有特解η=(一2,3,0,0,0)
T
,故原方程组的通解为 x=η+c
1
ξ
1
+c
2
ξ
2
+c
3
ξ
3
,其中c
1
,c
2
,c
3
为任意常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Igg4777K
0
考研数学一
相关试题推荐
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设A=相似于对角阵.求:(1)a及可逆阵P,使得P-1AP=为对角阵;(2)A100.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设A是m×n阶矩阵,B是n×m阶矩阵,则().
将函数f(x)=2+|x|(一1≤x≤1)展开成以2为周期的傅里叶级数,并求级数的和.
假设随机事件A与B相互独立,P(A)=P=a一1,P(A∪B)=,求a的值.
在全概率公式P(B)=P(Ai)P(B|AI)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
设f(x0)≠0,f(x)在x=x0连续,则f(x)在x0可导是|f(x)|在x0可导的()条件.
随机试题
工程咨询单位的主要营销手段有()。
资金的时间价值是客观存在的,生产经营的一项基本原则就是充分利用资金的时间价值并最大限度地获得其时间价值,这就要求()。
下列关于投资型保险产品的表述,正确的是()。
登记账簿必须以()为依据,并定期进行结账、对账。
一居民楼内电线的负荷只能允许同时使用6台空调。现有8户人家各安装了一台空调。问在一天(24小时)内,平均每户(台)最多可使用空调多少小时?()
在美国所有捐献的血液中有45%是O型血;由于O型血适用于任何人,所以在没有时间测定患者是何种血型的危急时刻,O型血是不可缺少的。O型血是唯一可与其他任何血型相融的血型,所以它可以输给任何受血者。然而正是由于这一特殊用途,O型血长期处于短缺状态。如果上文陈述
菱形中的较小的内角是60°.(1)菱形的一条对角线与边长相等(2)菱形的一条对角线是边长的倍
用高级语言编写的程序称之为()。
ThefinalstepofSQ3Risrevision.Revisionshouldnotberegardedassomethingtobeundertakenjustbeforeexaminations.【76】O
【B1】【B17】
最新回复
(
0
)