首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,且曲线积∫[3f’(x)-2f(x)+xe2x]ydx+f’(x)dy与路径无关,求f(x).
设f(x)二阶连续可导,且曲线积∫[3f’(x)-2f(x)+xe2x]ydx+f’(x)dy与路径无关,求f(x).
admin
2018-05-21
65
问题
设f(x)二阶连续可导,且曲线积∫[3f’(x)-2f(x)+xe
2x
]ydx+f’(x)dy与路径无关,求f(x).
选项
答案
因为曲线积分与路径无关,所以有 f"(x)=3f’(x)-2f(x)+xe
2x
,即f"(x)-3f’(x)+2f(x)=xe
2x
, 由特征方程λ
2
-3λ+2=0得λ
1
=1,λ
2
=2, 则方程f"(x)-3f’(x)+2f(x)=0的通解为f’(x)=C
1
e
x
+C
2
e
2x
, 令特解f
0
(x)=x(ax+b)e
2x
,代入原微分方程得a=1/2,b=-1, 故所求f(x)=C
1
e
x
+C
1
e
2x
+([*]-x)e
2x
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/IOr4777K
0
考研数学一
相关试题推荐
设[0,4]区间上y=f(x)的导函数的图形如图2—1所示,则f(x)()
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是()
设f(x)在[0,+∞]连续,且证明至少存在ξ∈(0,+∞),使得f(ξ)+ξ=0.
设f(u)(u>0)有连续的二阶导数,且z==16(x2+y2)z,求f(u).
设函数f(x)=x2,0≤x<1,而s(x)=bnsinnπx,一∞<x<+∞,其中bn=2∫01f(x)sinnπxdx,n=1,2,3,…,则s(一)等于()
[*](2)根据幂级数展开式的唯一性,得u(x)在x0=1处高阶导数的[*]
设函数f(x,y)在点(0,0)处可微,且f’x(0,0)=1,f’y(0,0)=一1,则极限
下述命题①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续;②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界;③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cχ=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cχ=0的基础解系.
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的凡阶无穷小,求证:f(x)的导函数f′(x)当x→a时是x-a的n-1阶无穷小.
随机试题
简述X线成像原理。
一次,我正在布置作业:“每个生字写5遍”。就听有个同学小声说:“都会写了,还让写!”我没说话就下课了。但这件事引起了我的反思,在班会上,我提出了“教师怎样留作业?”的问题。经过商讨,同学们一致同意:常规性的作业应该写,但可以根据自己对知识掌握的程度决定多写
男性,19岁,夏天野浴后发热、呕吐咖啡渣样物,查体:T38.5℃,巩膜黄染、全身皮肤散在出血点,心率100次/分,律齐,腹软、无压痛,肝脾未触及,最可能的诊断是
肝脏手术后一股应禁食
患儿,高度浮肿,按之没指,目胞浮肿,胸水,腹水,足肿如槌,面色白,神疲畏寒,四肢不温,食欲减退,咳逆上气,胸满喘急,难以平卧,舌质淡,苔白,脉细无力。方选
远离发电机端的网络发生短路时,可以认为哪些项相等?()
FIDIC合同条件中的“新黄皮书”适用于()。
A.圆孔B.卵圆孔C.棘孔D.眶上裂E.茎乳孔上颌神经出颅的位置是()。
下列选项不符合良好程序设计风格的是()。
下列说法错误的是()。
最新回复
(
0
)