首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy。
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyf"xy(x,y)dxdy。
admin
2018-04-14
131
问题
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,
f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=
xyf"
xy
(x,y)dxdy。
选项
答案
将二重积分[*]xyf"
xy
(x,y)dxdy转化为累次积分可得 [*]xyf"
xy
(x,y)dxdy=∫
0
1
dy∫
0
1
xyf"
xy
(x,y、)dx。 首先考虑∫
0
1
xyf"
xy
(x,y)dx,注意这里是把变量y看做常数的,故有 ∫
0
1
xyf"
xy
(x,y)dx=y∫
0
1
xdf’
y
(x,y)=xyf’
y
(x,y)|
0
1
-∫
0
1
yf’
y
(x,y)dx =yf’
y
(1,y)-∫
0
1
yf’
y
(x,y)dx。 由f(1,y)=f(x,1)=0易知f’
y
(1,y)=f’
x
(x,1)=0。 故 ∫
0
1
xyf"
xy
(x,y)dx=-∫
0
1
yf’
y
(x,y)dx, [*]xyf"
xy
(x,y)dxdy=∫
0
1
dy∫
0
1
xyf"
xy
(x,y)dx=-∫
0
1
dy∫
0
1
yf’
y
(x,y)dx, 对该积分交换积分次序可得 -∫
0
1
dy∫
0
1
yf’
y
(x,y)dx=-∫
0
1
dx∫
0
1
yf’
y
(x,y)dy。 再考虑积分∫
0
1
yf’
y
(x,y)dy,注意这里是把变量x看作常数的,故有 ∫
0
1
yf’
y
(x,y)dy=∫
0
1
ydf(x,y)=yf(x,y)|
0
1
-∫
0
1
f(x,y)dy=-∫
0
1
f(x,y)dy。 因此 [*]xyf"
xy
(x,y)dxdy=-∫
0
1
dx∫
0
1
代0t,小dxdyyf’
y
(x,y)dy=∫
0
1
dx∫
0
1
f(x,y)dy=[*]f(x,y)dxdy=a。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/I3k4777K
0
考研数学二
相关试题推荐
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
设z=f(u,v,x),u=φ(x,y),v=ψ(y),求复合函数z=f(φ(x,y),ψ(y),x)的偏导数
设f(x)在(-∞,+∞)内可微,证明:在f(x)的任何两个零点之间必有f(x)+fˊ(x)的一个零点.
被积函数为对数函数与幂函数的乘积,故采用分部积分法,将对数函数看作u.[*]
已知曲线的极坐标方程是r=1-cosθ,求该曲线上对应于θ=π/6处的切线与法线的直角坐标方程.
(2010年试题,20)计算二重积分其中
随机试题
设y=y(x)满足exy+sin(x2y)=y3,则y’(0)=______。
医院感染流行病学常用调查方法有个案调查、_______、_______、_______。
不属于食品污染的是()
软化点的试验条件有()。
对于同一个消费者来说,同样数量的商品总是提供同量的效用。()
甲在一刑事附带民事诉讼中,被法院依法判处罚金并赔偿被害人损失,但甲的财产不足以全部支付罚金和承担民事赔偿。下列关于如何执行本案判决表述哪一项是正确的?()
及时纠偏,_________纠错,不仅体现一个社会的集体智慧,也是一个国家理性力量的表现。就像当初,如能认识到人口问题的严重性,今天解决人口超负荷的难度就会低得多。因此,从及时纠错的现代理性角度看,适度容忍不同声音是相当必要的,多元价值的重要意义之一便是达
AccordingtoGregoryLuzaich.thedisadvantageofmodestdrinkingis______.Mr.Luzaichcreatedthesealtopreventthewinefr
ようじで、出席することができなくなりました。
TheMillenniumSeedBankProjectOneofthelargestconservationprojectseverundertaken,thisinternationalcollaboration
最新回复
(
0
)