首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为 (Ⅰ)求A; (Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
admin
2017-01-21
73
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第三列为
(Ⅰ)求A;
(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
选项
答案
(Ⅰ)由题意知Q
T
AQ=Λ,其中Λ=[*] 则A=QΛQ
T
,设Q的其他任一列向量为 (x
1
,x
2
,x
3
)
T
。因为Q为正交矩阵,所以 (x
1
,x
2
,x
3
)[*] 即x
1
+x
3
=0,其基础解系含两个线性无关的解向量,即为α
1
=(—1,0,1)
T
,α
2
=(0,1,0)
T
。把α
1
单位化得β
1
=[*](—1,0,1)
T
,所以 [*] (Ⅱ)证明:因为(A+E)
T
=A
T
+E=A+E,所以A+E为实对称矩阵。 又因为A的特征值为1,1,0,所以A+E特征值为2,2,1,都大于0,因此A+E为正定矩阵。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/I2H4777K
0
考研数学三
相关试题推荐
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤22;
设随机变量X和Y,相互独立,且均服从参数为1的指数分布,V=min(X,Y),U=max(X,Y)求(1)随机变量V的概率密度fv(v);(2)E(U+V).
曲线的切线与x轴和y,轴围成一个图形,记切点的横坐标为α试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设A,B为同阶可逆矩阵,则().
将函数f(x)=x/(2+x-x2)展开成x的幂级数.
幂级数xn的收敛半径为_________.
计算下列各定积分:
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
当x→0时,kx2与[*]是等阶无穷小,则k=___________.
求二元函数z=f(x,y)=x2y(4一x—y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
随机试题
肾小囊外层为_____________,内层细胞称为_____________。
提出“先行组织者”概念的是()。
(2009年10月)国家对内对外的具体代表和象征是______。
血液中直接调节胰岛素分泌的重要因素是
根据《2000年际贸易术语解释通则》,哪些国际贸易术语规定货物的风险自装运港货物越过船舷时从卖方转移给买方?()
有价证券是()的一种形式。
传统项目管理中的“三大目标”不包含________。
党在社会主义初级阶段的基本路线为社会主义现代化建设目标的实现提供了根本保障,实现社会主义初级阶段基本目标的根本立足点是()
Airpollutionkilledaboutsevenmillionpeoplelastyear,makingittheworld’ssinglebiggestenvironmentalhealthrisk,theW
Forthispart,youareallowed30minutestowriteacompositiononthetopicABoominContinuingEducation.Youshouldwritea
最新回复
(
0
)