首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内连续,以T为周期,令F(x)=∫0xf(t)dt.求证: (1)F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数. (2)∫0Tf(x)dx.
设f(x)在(一∞,+∞)内连续,以T为周期,令F(x)=∫0xf(t)dt.求证: (1)F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数. (2)∫0Tf(x)dx.
admin
2017-07-26
97
问题
设f(x)在(一∞,+∞)内连续,以T为周期,令F(x)=∫
0
x
f(t)dt.求证:
(1)F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数.
(2)
∫
0
T
f(x)dx.
选项
答案
(1)由φ(x+T)=F(x+T)一k(x+T) =∫
0
x
f(t)dt—kx+∫
x
x+T
f(t)dt一kT =φ(x)+∫
0
T
f(t)dt—kT (∫
x
x+T
f(t)dt=∫
0
T
f(t)dt) 令k=[*]∫
0
T
f(t)dt,则φ(x)=F(x)一kx是以T为周期的周期函数.从而有F(x)=kx+φ(x). (2)因为[*]不一定存在,所以不能用洛必塔法则求该极限. 但∫
0
x
f(t)dt可写成: ∫
0
x
f(t)dt=[*]∫
0
T
f(t)dt+φ(x),φ(x)在(一∞,+∞)连续且以T为周期.于是φ(x)在[0,T]上有界,在(一∞,+∞)上有界,所以, [*] (无穷小量与有界变量的乘积仍为无穷小量)
解析
只要确定常数k,使得φ(x)=F(x)一kx以T为周期.
转载请注明原文地址:https://www.kaotiyun.com/show/HfH4777K
0
考研数学三
相关试题推荐
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(I)的结果判断矩阵B~CTA-1C是否为正定矩阵,并证明你的结论.
设函数f(x)在区间(-R,R)内可展开成x的幂级数,证明:当f(x)是奇函数时,幂级数中不含x的偶次幂项;当f(x)是偶函数时,幂级数中不含x的奇次幂项.
扩音器插头为圆柱形,截面半径r为0.15cm,长度l为4cm,为了提高它的导电性能,要在这圆柱的侧面镀上一层厚为0.001cm的纯铜,问每个插头约需多少纯铜?
求幂级数的和函数f(x)及其极值。
利用幂级数的和函数的性质求下列级数在各自收敛域上的和函数:
设z=f(x,y),x=g(y,z)+其中f,g,φ在其定义域内均可微,求
设函数f(y)的反函数f-1(x)及fˊ[f-1(x)]与fˊˊ[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
求的反函数的导数.
铁路一编组站随机地编组发往三个不同地区E1,E2和E3的各2节、3节和4节车皮,求发往同一地区的车皮恰好相邻的概率p.
设f(x)=且g(x)=f(x2)+f(x—1),则g(x)的定义域为_________.
随机试题
从学生行为养成的角度看,厌恶刺激有消退不良行为的功能,而没有巩固良好行为的功能。()
在Excel2010活动单元格中输入=COUNT(1,3,5)
肝丙酮酸激酶别位抑制剂是
类风湿关节炎的特点是
2016年1月1日,甲企业(增值税一般纳税人)开始自行研发一项专利技术,发生与该项专利技术相关的经济业务活动如下:(1)1月31日,该项专利技术研究阶段工作结束,共发生研发人员薪酬25万元。本月用银行存款支付其他研发支出,取得增值税专用发票注明的
儿童少年在发育阶段肌肉弹性强,韧带伸展性好,要把握时机发展()。
德国人具有马的性格。他们会一边确认目标,一边__________地飞奔前行却绝不会__________。正是因为有了这种严谨的精神,德国人才会创造出__________于全世界的“奔驰”车。填入横线部分最恰当的一项是()。
2013年1—6月,我国房地产开发投资中,中部地区投资占比为:
在表单控件工具栏中,创建哪个控件,用于显示一段固定的文本信息字符串?
若设置字段的输入掩码为“####-######”,该字段正确的输入数据是
最新回复
(
0
)