首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2016年] 已知函数z=z(x,y)由方程(x2+y2)z+lnz+2(x+y+1)=0确定.求z=z(x,y)的极值.
[2016年] 已知函数z=z(x,y)由方程(x2+y2)z+lnz+2(x+y+1)=0确定.求z=z(x,y)的极值.
admin
2019-04-05
69
问题
[2016年] 已知函数z=z(x,y)由方程(x
2
+y
2
)z+lnz+2(x+y+1)=0确定.求z=z(x,y)的极值.
选项
答案
先由z′
x
=0,z′
y
=0,求出所有驻点,对每一个驻点(x
0
,y
0
),求出A=f″
xx
(x
0
,y
0
), B=f″
xy
(x
0
,y
0
),C=f″
yy
(x
0
,y
0
)的值,再利用命题1.4.3.2判别之,并求出其极值. (1)先求出驻点.为此在所给方程两边分别对x,y求偏导,得到 2xz+(x
2
+y
2
)[*]+2=0, ① 由对称性即得 2yz+(x
2
+y
2
)[*]+2=0, ② 令[*]得到[*] 即[*](z=0,lnz没有意义,舍去),故[*] 当x≠0时,将z=[*],y=x代入原方程得ln(一[*])=一2(x+1),即一[*]=e
-2(x+1)
,因而zx=一1.于是y
0
一x
0
=一1,z
0
=1,即所求驻点(z
0
,y
0
,z
0
)=(一l,一1,1). 当x=0时,由xz+1=0得到1=0矛盾,故方程①无解. (2)求出A,B,C在驻点处的值,为此在方程①两边分别对x,y求偏导,得到 [*] 在式②两边对y求偏导,得到 [*]⑤ 得x=x
0
=-1,y=y
0
=一1,z=z
0
=1.代入式③,式④,式⑤得到 [*] 因AC—B
2
=[*]>0,A<0,由命题1.4.3.2知,函数在x
0
=一1,y
0
=一1处取极大值,且极大值为1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HPV4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,1]上连续,证明:∫01ef(x)dx∫01e-f(y)≥1.
[*]
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x,令P=(x,Ax,A2X)(1)求3阶矩阵B,使A=PBP-1;(2)求|A+E|的值.
设随机变量X的概率分布为P{X=k}=的概率分布.
设b>a>0,证明:
设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1β2……βs也为Ax=0的一个基础解系.
设f(χ)=∫0tanχarctant2dt,g(χ)=χ-sinχ,当χ→0时,比较这两个无穷小的关系.
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
一容器的内侧是由图中(如图1—3—6)曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥)与x2+y2=1(y≤)连接而成。若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位为m,重力加速度为gm/s2,水的密度为103kg/
[2005年]设函数y=y(x)由参数方程确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是().
随机试题
(2014年)我国某汽车公司并购了某一发达国家的汽车公司。该发达国家具有发达的金融市场,能够进行所有的传统金融交易和现代金融衍生品交易。该汽车公司并购中的运作行为和并购后的运营模式是:(1)为了补充并购资金的不足,从国内商业银行取得了5年期浮动利率的美元贷
热处理分为哪几类?
女性,30岁,既往健康。乘飞机(经济舱)自北京直飞美国纽约。到达目的地时起身取行李,突然跌到,抢救无效死亡。最大可能是
心电图标准肢体导联Ⅱ是将心电监测仪器的两个电极放置在人体的
美国医学物理学家学会(AAPM)规定加速器X射线的稳定性每月监测的允许精度为
建筑高度超过()的每个垂直疏散通道及扩展区宜单独设置应急照明配电箱或应急照分配电装置。
在登记账簿过程中,每一账页的最后一行及下一页第一行都要办理转页手续,是为了()。
【《李秀成自述》】北京大学2015年历史学基础(中国史)真题
简述提高调查信度和效度的主要途径。(武大2011年研)
Readingisveryimportantinlearningforeignlanguages.Dosomeforeignlanguagereadingeverydayandtrytofinishoneforeig
最新回复
(
0
)