首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
等比数列是高中数列学习的重要内容之一。它与我们日常生活、生产和科学研究有着紧密的联系,尤其体现在资产折旧、贷款利率的计算等方面。针对“等比数列”的教学,请完成下面的任务: 根据拟定的教学目标,设计一个探索、发现等比数列及通项公式的教学过程,并说明设计意图
等比数列是高中数列学习的重要内容之一。它与我们日常生活、生产和科学研究有着紧密的联系,尤其体现在资产折旧、贷款利率的计算等方面。针对“等比数列”的教学,请完成下面的任务: 根据拟定的教学目标,设计一个探索、发现等比数列及通项公式的教学过程,并说明设计意图
admin
2022-08-12
82
问题
等比数列是高中数列学习的重要内容之一。它与我们日常生活、生产和科学研究有着紧密的联系,尤其体现在资产折旧、贷款利率的计算等方面。针对“等比数列”的教学,请完成下面的任务:
根据拟定的教学目标,设计一个探索、发现等比数列及通项公式的教学过程,并说明设计意图。
选项
答案
教学过程 一、创设情境 教师出示以下实例: 1.人体中的某种细胞经过细胞分裂可以由一个细胞分裂成两个细胞,两个细胞分裂成四个细胞,四个细胞分裂成八个细胞…… 2.我国古代数学家提出:“一尺之锤,日取其半,万世不竭。” 3.银行有一种支付利息的方式叫作“复利”,也就是“利滚利”,其计算本利和的公式是“本利和=本金×(1+利率)
存期
”。现存入银行1万元,年利率是1.98%,那么按照复利,5年内各年末得到的本利和分别是多少? 问题:请同学写出上述3个实例中所含有的数列。 学生给出结果,教师板书: 1.细胞分裂个数所组成的数列:1,2,4,8,… 2.把“一尺之锤”看成单位“1”,得到数列:1,1/2,1/4,1/8,… 3.各年末本利和所组成的数列:10 000×(1+0.0198),10 000×(1+0.0198)
2
,10 000×(1+0.0198)
3
,10 000×(1+0.0198)
4
,10 000×(1+0.0198)
5
。 问题:回忆等差数列的概念,观察上面所写出的数列,他们有什么共同点? 教师引导学生通过观察、类比、思考和交流,得出结论。共同特征:从第二项起,每一项与它的前一项的比等于同一个常数。 【设计意图】通过写出生活实例中的数列,使学生感受等比数列的现实生活意义,理解等比数列的结构性质;对等差数列的回忆,引导学生类比等差关系和等差数列的概念,发现等比关系。 二、新课讲授 教师引导学生依照等差数列的定义,尝试总结出等比数列的定义。 教师总结等比数列的定义:一般地,如果一个数列,从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫作等比数列。这个常数叫作等比数列的公比,用字母q表示。 教师出示下列数列,让学生判断是否为等比数列,若是,找出公比;若不是,说明理由。 数列:1,3,9,27,… -1,-1/2,-1/4,-1/8,… 1,-2,4,-8,… -1,-1,-1,-1,… 1,0,1,0,… 问题:①公比q能为0吗?为什么?首项能为0吗? ②公比q能为1吗?为什么?是什么数列? 学生交流讨论,教师指导总结。 问题:根据等比数列的定义能发现怎样的递推公式? 教师根据等差数列的递推公式,引导学生得出:a
n
/a
n-1
=q。 问题;我们已经学过了等差数列的通项公式,请同学们尝试根据递推公式写出等比数列的通项公式。 教师巡视,并让学生小组交流讨论,引导学生由叠加法联想到叠乘法,使等式左、右两边都相乘消去其余项得到通项公式,即 叠乘法:a
2
/a
1
=q, a
3
/a
2
=q, a
4
/a
3
=q, … a
n-1
/a
n-2
=q, a
n
/a
n-1
=q。 两边叠乘得到:a
n
/a
1
=q
n-1
,所以等比数列的通项公式为a
n
=a
1
q
n-1
,当n=1时,通项公式也成立。 问题:设α
n-1
,a
n
,a
n+1
是等比数列,则α
n-1
,a
n
,a
n+1
之间有怎样的关系? 教师引导学生利用等比数列的通项公式来推导出a
n
2
=a
n-1
·a
n+1
。然后给出等比中项的定义。 【设计意图】让学生类比等差数列通项公式的推导过程,推导出等比数列的通项公式,强化学生自主学习和归纳推理的能力,向其渗透类比的数学思想;通过对等比中项公式的推导,加深学生对通项公式的理解,进而获得等比数列的相关性质。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HKtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
经过30多年的不懈努力,深圳迅速从一个边陲小镇发展成为一个现代化大城市,综合经济实力跃居全国大中城市前列。这充分证明了()。
小夏使用信用卡在北京透支8000元购买了一台外国品牌笔记本电脑,在免息期间通过银行偿还了这笔消费款。在这一过程中。货币执行的职能是()。
人们不小心打破花瓶除了沮丧别无他为,丹麦物理学家雅各布.博尔却在打破花瓶时细心收集碎片,按重量的数量级分类,由此发现不同重量级间的倍数关系,于是“碎花瓶理论”产生,这一理论在恢复破损文物等工作中发挥着重要作用。这体现的哲理是()。①哲学智慧产生于人类
张某等五人劫持了甲与乙,然后命令甲杀死乙,否则将杀死甲。甲被逼无奈用绳子勒死了乙。根据刑法规定,甲的行为属于()。
小刘到一家纺织厂应聘车间主任,纺织厂开出如下聘用条件,其中符合《中华人民共和国劳动法》规定的是()。
设函数,则f’(x)的零点个数为().
已知矩阵,求曲线y2—x+y=0在矩阵M—1对应的线性变换作用下得到的曲线方程。
已知向量a,b,满足|a|=|b|=1,且|a—kb|=|ka+b|,其中k>0。(1)试用k表示a.b,并求出a.b的最大值及此时a与b的夹角θ的值;(2)当a.b取得最大值时,求实数λ,使|a+λb|的值最小,并对这一结论作出几何解
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)—x=0的两个根x,x满足0<x1<x2<。(1)当x∈(0,x1)时,证明x<f(x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,证明x0<。
随机试题
A.桃红饮B.桃仁红花煎C.血府逐瘀汤D.通窍活血汤E.桃红四物汤
电梯的安装、改造与维修活动必须得到(),并由具备相应资质的单位进行。
在施工阶段,损失控制计划系统主要由()组成。
下面关于个案调查的说法正确的是()。
下列属于施工项目质量计划的主要内容的有()。
股份有限公司的董事会成员为5~19人,设董事长1人,可以设副董事长1-2人。董事长和副董事长由董事会全体通过选举产生,董事长为公司的法定代表人。( )
甲公司拟发行5年期债券进行筹资,债券票面金额为1000元,票面利率为8%,每年年末付息一次,若市场利率为10%,那么该公司债券发行价格应为( )元。
在抽样检验中,与生产方过程平均相对应的质量参数为()。
20世纪70年代之后,()成为家庭治疗领域中最具有影响力的服务模式。
下列叙述中正确的是
最新回复
(
0
)