首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f"’(ξ)=3.
设函数f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f"’(ξ)=3.
admin
2019-08-01
56
问题
设函数f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0,证明:在开区间(一1,1)内至少存在一点ξ,使f"’(ξ)=3.
选项
答案
由泰勒中值定理可知 f(x)=f(0)+f’(0)x+[*]f"’(η)x
3
其中η介于0与x之间,x∈[一1,1] 分别令x=一1和x=1,并结合已知条件得 0=f(一1)=f(0)+[*]f"’(η
1
),一1<η
1
<0 1=f(1)=f(0)+[*]f"’(η
2
), 0<η
2
<1 两式相减可得 f"’(η
1
)+f"’(η
2
)=6 由f"’(x)的连续性,f"’(x)在闭区间[η
1
,η
2
]上有最大值和最小值,设它们分别为M和m,则有 m≤[*][f"’(η
1
)+f"’(η
2
)]≤M 再由连续函数的介值定理知,至少存在一点ξ∈[η
1
,η
2
][*](一1,1) 使 f"’(ξ)=[*][f"’(η
1
)+f"’(η
2
)]=3.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/HDN4777K
0
考研数学二
相关试题推荐
设f(x)在x=2处连续,且,则曲线y=f(x)在(2,f(2))处的切线方程为__________.
设∫xf(x)dx=arcsinc+c,则=_____.
已知α1,α2,…,αt都是非齐次线性方程组Ax=b的解,如果c1α1+c2α2+…+ctαt仍是Ax=b的解,则c1+c2+…+ct=______.
曲线x=a(cost+tsint),y=a(sint-tcost)(0≤t≤2π)的长度L=_________.
设y=f(x)可导,且y’≠0.若已知y=f(x)的反函数x=φ(y)可导,试由复合函数求导法则导出反函数求导公式.
设α1,α2,…,αs是一组两两正交的非零向量,证明它们线性无关.
计算下列二重积分:(Ⅰ)xydσ,其中D是由曲线r=sin2θ(0≤θ≤)围成的区域;(Ⅱ)xydσ,其中D是由曲线y=,x2+(y-1)2=1与y轴围成的在右上方的部分.
在极坐标变换下将f(x,y)dσ化为累次积分,其中D为:x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
设f(x)在[a,b]上连续,在(a,b)内二阶可导,证明:∈(a,b)使得f(b)-(b-a)2f’’(ξ).
设f(x)在x>0上有定义,且对任意正实数x,yf(xy)=xf(y)+yf(x),f’(1)=2,试求f(x).
随机试题
脊柱关节病的关节受累以骶髂关节及下肢不对称性关节炎为特点。()
下列哪种作业不宜使用小沿安全帽?()
发行公司债的股份有限公司的净资产额应不低于()。
(2010年)根据现行消费税政策,关于消费税征税范围的说法,正确的有()。
大学生第一学期的学习内容对第二学期的学习产生的积极影响是()
县级以上地方各级人民代表大会是县级以上地方国家权力机关,其职权不包括:
八戒:娶妻
方程4x2-4(m-1)x+m2=7的两根之差的绝对值大于2.(1)1<m<2.(2)-5<m<-2.
In2014,olderAmericansfell29milliontimes,leadingto7millioninjuries,accordingtoareportpublishedlastweek.About
China’sMinistryofEducationhasallowedcollegestudentstosuspendtheirstudiesandstartuptheirownbusinesses.Itissai
最新回复
(
0
)