首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
微分方程y"一4y=xe2x+2sinx的特解形式为( ).
微分方程y"一4y=xe2x+2sinx的特解形式为( ).
admin
2021-01-12
48
问题
微分方程y"一4y=xe
2x
+2sinx的特解形式为( ).
选项
A、(ax
2
+bx)e
2x
+Acosx+Bsinx
B、(ax
2
+bx)e
2x
+x(Acosx+Bsin2x)
C、(ax+b)e
2x
+Acosx+Bsinx
D、(ax+b)e
2x
+x(Acosx+Bsinx)
答案
A
解析
特征方程为
λ
2
一4=0,
特征值为λ
1
=一2,λ
2
=2.
微分方程y"一4y=xe
2x
的特解为y
1
(x)=x(ax+b)e
2x
=(ax
2
+bx)e
2x
;
微分方程y"一4y=2sinx的特解为y
2
(x)=Acosx+Bsinx,
故方程y"一4y=xe
2x
+2sinx的特解形式为
y
1
(x)+y
2
(x)=(ax
2
+bx)e
2x
+Acosx+Bsinx,
应选(A).
转载请注明原文地址:https://www.kaotiyun.com/show/HD84777K
0
考研数学二
相关试题推荐
(2000年)已知f(χ)是周期为5的连续函数.它在χ=0某个邻域内满足关系式f(1+sinχ)-3f(1-sinχ)=8χ+α(χ)其中α(χ)是当χ→0时比χ高阶的无穷小,且f(χ)在χ=1处可导,求曲线y=f(χ)在点(6,f(6
[2012年]已知函数f(x)满足方程f″(x)+f′(x)一2f(x)=0及f″(x)+f(x)=2ex.求曲线y=f(x2)∫0xf(一t2)dt的拐点.
[2007年]设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=[1,一1,1]T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B
(09年)计算不定积分
设函数f(u)在(0,+∞)内具有二阶导数,且z=f()满足等式验证f"(u)+=0;
(2010年试题,17)设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且ψ’(1)=6,已知,求函数ψ(t).
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点(,0)。(Ⅱ)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
设则
设f(x)=∫0sinxsin2tdt,g(x)=∫02xln(1+t)dt,则当x→0时,f(x)与g(x)相比是()
随机试题
Ifyouhavehighbloodpressure,you’reingood【C1】________Hypertensionaffects67millionAmericans,includingnearlytwo-third
A.蠕动B.分节运动C.集团蠕动D.容受性舒张胃肠道共有的运动形式为
紫参是下列哪味药的别名
受法律保护的物权有( )。
战略管理开始提出的时间大约是20世纪()。
在WindowsXP默认环境中,下列哪个组合键能对选定的文档进行剪切操作?()
学制的发展与完善经历了漫长的历史进程。现代学制包括()。
《三国演义》开篇称:“天下大势,分久必合,合久必分。”但是这句话未必准确,因为:
取前伸位关系记录是为了确定()。
Theattempttobreedsuitablevarietiesofjojobabyusinghybridizationto(i)______favorabletraitswasfinallyabandonedin
最新回复
(
0
)