首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[*] 则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(I)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0→A(β1,β2,…,βn)=O→ABT=O→BAT=O.→α1,α2,…,αn为BY=O的一组解,而
[*] 则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(I)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0→A(β1,β2,…,βn)=O→ABT=O→BAT=O.→α1,α2,…,αn为BY=O的一组解,而
admin
2016-10-13
51
问题
选项
答案
[*] 则(Ⅱ)可写为BY=0,因为β
1
,β
2
,…,β
n
为(I)的基础解系,因此r(A)=n,β
1
,β
2
,…,β
n
线性无关,Aβ
1
=Aβ
2
=…=Aβ
n
=0→A(β
1
,β
2
,…,β
n
)=O→AB
T
=O→BA
T
=O.→α
1
,α
2
,…,α
n
为BY=O的一组解,而r(B)=n,α
1
T
,α
2
T
,…,α
n
T
线性无关,因此α
1
T
,α
2
T
,…,α
n
T
为BY=0的一个基础解系.得通解为k
1
α
1
T
+k
2
α
2
T
+…+k
n
α
n
T
(k
1
,k
2
,…,k
s
为任意常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/H6u4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
[*]
求下列函数的最大值和最小值:
考虑二元函数的下面4条性质:①f(x,y)在点(xo,yo)处连续;②f(x,y)在点(xo,yo)处的两个偏导数连续;③f(x,y)在点(xo,yo)处可微;④f(x,y)在点(xo,yo)处的两个偏导数存在.若用“P→Q”表示
设Г:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t),(α,β)有连续的导数且xˊ2(t)+yˊ2(t)≠0,f(x,y)在D内有连续的偏导数,若Po∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点Po沿Γ的切线
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
依题设,置信区间的长度为2[*]
设α1,α2,α3是四元非齐次方程组AX=b的三个解向量。且秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f〞(x)<0,且f(1)=fˊ(1)=1,则().
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
随机试题
已知:S=’XYZ*+’T=’(X+Z)*Y’,试利用串的各种基本运算将S转换为T。
简述传播学和新闻学的不同。
下列症状和体征由左心衰引起的是()。
A.EBVB.HTLVC.HBVD.VZVE.HPV与白血病有关的病毒是
社会调控
依据企业所得税的相关规定,房地产企业开发产品的成本计量与核算的方法是()。(2017年)
经常预算的主要收入来源是()。
“长期借款”科目的期末账面余额,反映企业尚未偿还的各种长期借款的本金。()
某旅游开发有限公司2011年10月发生有关业务及收人如下:(1)下设文物保护单位举办文化节门票收入1205万元;(2)在景区索道客运收入800万元;(3)民俗文化村项目表演收入1050万元;(4)与甲企业签订合作
简述教师介入游戏的时机和方式。
最新回复
(
0
)