首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(-∞,+∞)上连续,且满足f(x)=∫0xf(x-t)sintdt+x.则在(-∞,+∞)上,当x≠0时,f(x) ( )
设f(x)在区间(-∞,+∞)上连续,且满足f(x)=∫0xf(x-t)sintdt+x.则在(-∞,+∞)上,当x≠0时,f(x) ( )
admin
2018-07-23
56
问题
设f(x)在区间(-∞,+∞)上连续,且满足f(x)=∫
0
x
f(x-t)sintdt+x.则在(-∞,+∞)上,当x≠0时,f(x) ( )
选项
A、恒为正.
B、恒为负.
C、与x同号.
D、与x异号.
答案
C
解析
令x-t=u,作积分变量代换,得
f(x)=∫
x
0
sin(x-u)d(-u)+x=∫
0
x
f(u) sin(x-u)d(-u)+x
=sinx∫
0
x
f(u)cosudu-cosx∫
0
x
f(u)sinudu+x,
fˊ(x)=cosx∫
0
x
f(u)cosudu+sinx·cosx·f(x)+sinx∫
0
x
f(u)sinudu-cosx·sinx·f(x)+1
= cosx∫
0
x
f(u)cosudu+sinx∫
0
x
f(u)sinudu+1,
f″(x)=-sinx∫
0
x
f(u)cosudu+cos
2
·f(x)+ cosx∫
0
x
f(u)sinudu+sin
2
·f(x)
=f(x)-f(x)+x,
所以
.又因f(0)=0,fˊ(0)=1,所以C
1
=1,所以C
2
=0.从而
[img][/img]
转载请注明原文地址:https://www.kaotiyun.com/show/Goj4777K
0
考研数学二
相关试题推荐
设其中E是n阶单位阵,α=[a1,a2,…,an]T≠0.计算A2,并求A-1;
设函数f(x)在x=2的某邻域内可导,且fˊ(x)=ef(x),f(2)=1,则fˊ〞(2)=_______.
A、 B、 C、 D、 A
[*]
设a1,a2,a3是4元非齐次线性方程组Ax=b的三个解向量,且秩(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
求曲线x3-xy+y3=1(x≥0,y≥0)上点到坐标原点的最长距离与最短距离.
设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵.若A有特征值λ,则(A*)2+E必有特征值______________.
积分值=____________.
设f(x)=arcsinx,ξ为f(x)在闭区间[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限.
对于实数x>0,定义对数函数Inx=依此定义试证:(1)=一lnx(x>0);(2)ln(xy)=lnx+Iny(x>0,y>0).
随机试题
A.细胞水肿B.脂肪变性C.萎缩D.纤维素样坏死E.包裹钙化肺结核干酪样坏死转向愈合发生
A.窄谱抗生素B.广谱抗生素C.抑菌性抗生素D.杀菌性抗生素E.联合应用抗生素混合感染时选用
对于国有资金投资的建设工程招标,下列说法错误的是()。
根据法律规范的效力不同,我国现行的统计法律规范的表现形式主要包括统计法律、统计行政法规、地方性法规三种。()
对可撤销合同,当事人请求变更往往是无效的。()
因为学生进步明显,老师取消了对他的处分。这属于()。
近年来,不少国家纷纷实施“人与生物圈计划”,目的就是为了寻求同一个答案。为什么人类在享受自己获得和创造的财富时,会不时受到大自然种种惩罚?因为人类在土壤侵蚀、沙漠化、滥伐森林、越来越多的物种灭绝、环境污染等所导致的生态系统退化中,逐步意识到自身还没有真正揭
改变积分次序f(x,y)dx+f(x,y)dx.
已知A,B都是n阶矩阵,且P-1AP=B,若α是矩阵A属于特征值λ的特征向量,则矩阵B必有特征向量__________.
编写如下程序:PrivateSubCommand1_Click() Dimstr1AsString,str2AsString str1=InputBox("输入一个字符串") subfstr1,str2 Prints
最新回复
(
0
)