首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(-∞,+∞)上连续,且满足f(x)=∫0xf(x-t)sintdt+x.则在(-∞,+∞)上,当x≠0时,f(x) ( )
设f(x)在区间(-∞,+∞)上连续,且满足f(x)=∫0xf(x-t)sintdt+x.则在(-∞,+∞)上,当x≠0时,f(x) ( )
admin
2018-07-23
71
问题
设f(x)在区间(-∞,+∞)上连续,且满足f(x)=∫
0
x
f(x-t)sintdt+x.则在(-∞,+∞)上,当x≠0时,f(x) ( )
选项
A、恒为正.
B、恒为负.
C、与x同号.
D、与x异号.
答案
C
解析
令x-t=u,作积分变量代换,得
f(x)=∫
x
0
sin(x-u)d(-u)+x=∫
0
x
f(u) sin(x-u)d(-u)+x
=sinx∫
0
x
f(u)cosudu-cosx∫
0
x
f(u)sinudu+x,
fˊ(x)=cosx∫
0
x
f(u)cosudu+sinx·cosx·f(x)+sinx∫
0
x
f(u)sinudu-cosx·sinx·f(x)+1
= cosx∫
0
x
f(u)cosudu+sinx∫
0
x
f(u)sinudu+1,
f″(x)=-sinx∫
0
x
f(u)cosudu+cos
2
·f(x)+ cosx∫
0
x
f(u)sinudu+sin
2
·f(x)
=f(x)-f(x)+x,
所以
.又因f(0)=0,fˊ(0)=1,所以C
1
=1,所以C
2
=0.从而
[img][/img]
转载请注明原文地址:https://www.kaotiyun.com/show/Goj4777K
0
考研数学二
相关试题推荐
设an>0(n=l,2,…),Sn=a1+a2+…+an,则数列{Sn}有界是数列{an}收敛的
[*]
下列反常积分发散的是()
y=2x的麦克劳林公式中xn项的系数是________.
已知曲线的极坐标方程是r=1-cosθ,求该曲线上二对应于θ=π/6处的切线与法线的直角坐标方程.
设f(x)在区间[a,b]上二阶可导且f"(x)≥0.证明:
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫-aaf(x)dx.
设A,B为同阶方阵,举一个二阶方阵的例子说明(1)的逆命题不成立;
(2007年)如图,连续函数y=f(χ)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(χ)=∫0χf(t)dt,则下列结论正确【】
设A是n阶矩阵,下列命题错误的是().
随机试题
以下几种关于票据签章行为的说法中正确的是()
化脓性骨髓炎死骨形成后,其结果可
关于PCR的叙述,不正确的是
联合国救灾协调员办事处在美国市场采购原产于加拿大的冰雪救灾物资无偿援助我国,该批物资在洛杉矶装船,在日本东京中转后运抵我国,这种情况其报关单“起运国(地区)”栏目应填为()。
企业因综合性项目取得的政府补助,需要将其分解为与资产相关的部分和与收益相关的部分,分别进行会计处理;难以区分的,将政府补助整体归类为与收益相关的政府补助,视情况不同。直接计入当期损益或者在项目期内分期确认为当期损益。()
Y注册会计师负责对X公司20×7年度财务报表进行审计。相关资料如下:资料一:X公司主要从事A产品的生产和销售,无明显产销淡旺季。产品销售采用赊销方式,正常信用期为20天。在A产品生产成本中,A原材料成本占重大比重。A原材料在20×7年的年初、年末库存均
下列先秦思想家中,主张施仁政、行王道的一位是()。
公款吃喝,上有禁令,下有批评。然而,禁归禁,吃归吃,再穷的地方照样在不断地吃。而这些吃客们不知道是否想过:他们吃掉的岂止是美味佳肴,还有•辛国的希望呵!把“希望”称作“工程”的,在我国历史上绝无仅有。邓小平同志亲笔为之题词,并以“一个老共产党员”的名义为其
Sheisonly______satisfiedtocopynotesofotherswithoutthepainofthoughtforherself.
Accidentsarecaused;theydon’tjust【C1】______.Thereasonmaybe【C2】______tosee:anover-loadedtray,ashelfoutofreach,o
最新回复
(
0
)