首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0, 1,1)T,α2=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,—1,—1,1)T,β2=(1,—1,1,—1,2)T,β3
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0, 1,1)T,α2=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,—1,—1,1)T,β2=(1,—1,1,—1,2)T,β3
admin
2017-01-21
51
问题
设线性方程组(1)Ax=0的一个基础解系为α
1
=(1,1,1,0,2)
T
,α
2
=(1,1,0, 1,1)
T
,α
2
=(1,0,1,1,2)
T
。线性方程组(2)Bx=0的一个基础解系为β
1
=(1,1,—1,—1,1)
T
,β
2
=(1,—1,1,—1,2)
T
,β
3
=(1,—1,—1,1,1)
T
。求
(Ⅰ)线性方程组(3)
的通解;
(Ⅱ)矩阵C=(A
T
,B
T
)的秩。
选项
答案
(Ⅰ)线性方程组(l)Ax=0的通解为x=k
1
α
1
+k
2
α
2
+k
3
α
3
;线性方程组(2)Bx=0的通解为x=l
1
β
1
+l
2
β
2
+l
3
β
3
;线性方程组(3)[*]的解是方程组(1)和(2)的公共解,故考虑线性方程组(4) k
1
α
1
+k
2
α
2
+k
3
α
3
=l
1
β
1
+l
2
β
2
+l
3
β
3
,将其系数矩阵作初等行变换,即 [*] 则方程组(4)的一个基础解系是(—2,0,2,—1,0,1)
T
。将其代入(4)得到方程组(3)的一个基础解系ξ=—2α
1
+2α
2
=—β
1
+β
3
=(0,—2,0,2,0)
T
。所以方程组(3)的通解为 x=k(0,—1,0,1,0)
T
,其中k为任意常数。 (Ⅱ)线性方程组(3)[*]与线性方程组x
T
(A
T
,B
T
)=0等价,而方程组(3)的基础解系只含一个向量,故矩阵C=(A
T
,B
T
)的秩r(C)=5—1=4。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/GmH4777K
0
考研数学三
相关试题推荐
一射手对同一目标独立地进行4次射击,若至少命中一次的概率80/81,则该射手的命中率为__________.
由题设,根据行列式的定义和数学期望的性质,有[*]
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|x|<x}=α,则x等于().
设函数y=y(x)往(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程d2x/dy2+(y+sinx)(dx/dy)3=0变换为y=y(x)满足的微分方程;
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x1y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).当L与直线y=ax所围成平面图形的面积为8/3时,确定a的值.
求极限
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求—F3i事件发生的概率:(1)两个球中一个是红球一个是白球;(2)两个球颜色相同.
A、 B、 C、 D、 B因为当x>0时,有tanx>x,于是有可见有I1>I2,可排除C、D,又由I2<,可排除A,故应选B。
随机试题
侵犯商标权的赔偿数额应当根据侵权人因侵权所获利益或者被侵权人因被侵权所受损失来计算。上述两种情形难以确定的,由法院根据侵权行为的情节判决最高可以给予侵权人的法定赔偿额是()
Therearetimeswhenpeoplearesotiredthattheyfallasleepalmostanywhere.Wecanseethereisalotofsleepingonthebus
组织液与血浆成分的主要区别是组织液内
采购设备时,根据设计文件要求编制的设备采购方案应由()批准后方可实施。
按现行会计制度,下列属于施工企业存货的有( )。
除下列哪一项外,资产评估机构不能申请证券评估资格?()
运输成本主要由()组成。
就知识产权中的财产权而言,其基本特征之一是具有法定保护期的限制,但是并非知识产权中每一项财产权都具有时间限制。根据知识产权法的有关规定,以下说法中正确的是:(18)。
ほら、見てください。あじさいの花が______、きれいですよ。
(1)SocialmobilityintheU.K.couldbereversedunlessthegovernmentanduniversitiesmakechangestoencourageandpayfo
最新回复
(
0
)