首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证: (1)若x0∈(a,b),则对于(a,b)内的任何x,有 f(x0)≥f(x)一f(x0)(x—x0), 当且仅当x=x0时等号成立; (2)若x1,x2,…,xn
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证: (1)若x0∈(a,b),则对于(a,b)内的任何x,有 f(x0)≥f(x)一f(x0)(x—x0), 当且仅当x=x0时等号成立; (2)若x1,x2,…,xn
admin
2020-03-16
67
问题
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:
(1)若x
0
∈(a,b),则对于(a,b)内的任何x,有
f(x
0
)≥f(x)一f(x
0
)(x—x
0
),
当且仅当x=x
0
时等号成立;
(2)若x
1
,x
2
,…,x
n
∈(a,b),且x
i
<x
i+1
(i=1,2,…,n一1),则
,
其中常数k
i
>0(i=1,2,…,n)且∑
k
i
=1.
选项
答案
(1)将f(x)在x
0
点泰勒展开,即 f(x)=f(x
0
)+f’(x
0
)(x一x
0
)+[*](x一x
0
)
2
,ξ在x
0
与x之间. 由已知f"(x)<0,x∈(a,b)得 [*](x一x
0
)
2
≤0(当且仅当x=x
0
时等号成立) 于是f(x)≤f(x
0
)+f’(x
0
)(x一x
0
),即 f(x
0
)≥f(x)一f’(x
0
)(x—x
0
)(当且仅当x=x
0
时等号成立). (2)因为x
1
=[*]∈(a,b). 取x
0
=[*],对x
i
(i=1,2,…,n)利用(1)的结果有 f(x
0
)≥f(x
i
)一f(x
0
)(x
i
一x
0
),i=1,2,…,n, 当且仅当x
i
=x
0
时等号成立. 而x
0
≠x
1
且x
0
≠x
n
,将上面各式分别乘以k
i
(i=1,2,…,n)后再求和,有 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Gb84777K
0
考研数学二
相关试题推荐
设n阶矩阵A的秩为1,试证:(1)A可以表示成n×1矩阵和1×n矩阵的乘积;(2)存在常数μ,使得Ak=μk一1A.
验证函数在[0,2]上满足拉格朗日定理.
[*]
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设A,B为n阶矩阵,P=求P.Q;
设4元线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,
已知函数f(u)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y一xey-1=1所确定。设z=f(lny一sinx),求
设在区间[e,e2]上,数p,q满足条件px+q≥lnx,求使得积分I(p,q)=(px+q—lnx)dx取得最小值的p,q的值.
[2000年]设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=().
设z=f(χ-y+g(χ-y-z)),其中f,g可微,求
随机试题
用以描述样本数据集中趋势的指标不包括()
根据统计分析结果进行预测的基本步骤中不包括()
会计法律是指()。
公开募集基金的基金管理人因违法违规、违反基金合同等原因给基金财产或者基金份额持有人的合法权益造成损失,应当承担赔偿责任的,可以优先使用()予以赔偿。
根据《中华人民共和国物权法》的规定,抵押合同一般包括下列条款()。
可用于治理通货膨胀的货币政策措施是()。
2010年进出口额之差为()。
社会成员的幸福感是可以运用现代手段精确量化的。衡量一项社会改革措施是否成功,要看社会成员的幸福感总量是否增加,S市最近推出的福利改革明显增加了公务员的幸福感总量,因此,这项改革措施是成功的。以下哪项如果为真,最能削弱上述论证?
老王正在Excel中计算员工本年度的年终奖金,他希望与存放在不同工作簿中的前三年奖金发放情况进行比较,最优的操作方法是()。
AudienceofWritingAudienceisaveryimportantconceptforwriting.Youneedtoanalyzeyouraudienceintermsofthefoll
最新回复
(
0
)