首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值.
[2008年] 求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值.
admin
2019-04-05
77
问题
[2008年] 求函数u=x
2
+y
2
+z
2
在约束条件z=x
2
+y
2
和x+y+z=4下的最大值与最小值.
选项
答案
本题是一道条件极值的常规题,这里约束条件有两个,可构造双参数的拉 格朗日函数,也可构造单参数的拉格朗日函数求解. 解一 由约束条件z=x
2
+y
2
,x+y+z=4构造双参数的拉格朗日函数,即 F(x,y,z,λ,μ)=x
2
+y
2
+z
2
+λ(x
2
+y
2
一z)+μ(x+y+z一4). 于是[*] 由式①、式②解得x=y(但λ=一1,μ=0不是解).由式④、式⑤得到 z=x
2
+y
2
=2x
2
, z=4—2x, 则2x
2
=4—2x,即x
2
+x一2=0,亦即(x+2)(x一1)=0,故x
1
=一2,x
2
=1,因而z
1
=8, z
2
=2. 将(x
1
,y
1
,z
1
)=(一2,一2,8),(x 2,y 2,z 2)=(1,1,2)代入函数U中,得到u(x
1
,y
1
,z
1
)=72, u(x
,y
2
,z
2
)=6,故所求的最大值为72,最小值为6. 解二 由约束条件z=x
2
+y
2
和x+y+z=4得到x
2
+y
2
=4一x—y,构造单参数的拉格朗日函数,即 F(x,y,λ)=x
2
+y
2
+(x
2
+y
2
)
2
+λ(x
2
+y
2
+x+y一4), 于是 [*] 解得(x
1
,y
1
)=(一2,一2),(x
2
,y
2
)=(1,1),则z
1
=8,z
2
=2,所求最大值为72,最小值为6.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/GPV4777K
0
考研数学二
相关试题推荐
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
设f和g为连续可微函数,u=f(x,xy),v=g(x+xy),求.
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
设函数f(u)有连续的一阶导数,f(2)=1,且函数z=满足,x>0,y>0,①求z的表达式.
设函数f(x)连续,且∫0xtf(2x一t)dt=已知f(1)=1,求∫12f(x)dx的值.
设试判别函数在原点(0,0)处,是否可偏导?偏导数是否连续?是否可微?
求下列函数的导数与微分:(Ⅰ)设y=,求dy;(Ⅱ)设y=arctaneχ-;(Ⅲ)设y=(χ-1),求y′,与y′(1).
求下列变限积分函数的导数:(Ⅰ)F(x)=,求F’(x)(x≥0);(Ⅱ)设f(x)处处连续,又f’(0)存在,F(x)=,求F"(x)(-∞<x<+∞).
随机试题
里格斯认为,在现代工业社会中,成为各种利益和要求的汇聚点和表达者的是
A.挤压伤B.牵拉伤C.切割伤D.摩擦伤E.弹片伤产伤引起的新生儿臂丛神经损伤属于
可出现强迫蹲位的疾病是
移动通信的网络优化是平衡()之间矛盾的过程。
甲下落不明已满两年,下列人员无权申请其失踪的是( )。
以下各项不属于自动稳定的财政政策的表现的是()。
下列关系中,本质上是对立统一关系的是()。
《中华人民共和国旅游法》规定,()等旅游者在旅游活动中依照法律、法规和有关规定享受便利和优惠。
Themostexcitingkindofeducationisalsothemostpersonal.Nothingcan【1】thejoyofdiscoveringforyourselfsomethingthat
MyfavoriteT.V.show?"TheTwilightZone."I【B1】______liketheepisodecalled"ThePrinter’sDevil."It’saboutanewspap
最新回复
(
0
)