首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵 满足AB=0. ①用正交变换化xTAx为标准形,写出所作变换. ②求(A一3E)6.
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵 满足AB=0. ①用正交变换化xTAx为标准形,写出所作变换. ②求(A一3E)6.
admin
2017-11-23
55
问题
设二次型x
T
Ax=x
1
2
+4x
2
2
+x
3
2
+2ax
1
x
2
+2bx
1
x
3
+2cx
2
x
3
,矩阵
满足AB=0.
①用正交变换化x
T
Ax为标准形,写出所作变换.
②求(A一3E)
6
.
选项
答案
[*] ①先作正交矩阵Q,使得Q
-1
AQ是对角矩阵. 条件说明B的3个列向量都是A的特征向量,并且特征值都是0.由于B的秩大于1,特征值的重数大于1.于是A的特征值为0,0,6.(tr(A)=6.) 求属于特征值0的两个单位正交特征向量: 对B的第1,2两个列向量α
1
=(1,0,1)
T
,α
2
=(2,一1,0)
T
作施密特正交化: η
1
=α
1
/||α
1
||=[*](1,0,1)
T
,η
2
=β
2
/||β
2
||=[*](1,一1,一1)
T
. 求属于特征值6的一个单位特征向量:属于特征值6的特征向量与α
1
,α
2
都正交, [*] 的非零解,求出α
3
=(1,2,一1)
T
是属于6的一个特征向量,单位化 η
3
=α
3
/||α
3
||=[*](1,2,-1)
T
. 记Q=(η
1
,η
2
,η
3
,则Q是正交矩阵,Q
-1
AQ= [*] 作正交变换x=Qy,它x
T
Ax化为标准二次型6y
3
2
. ②A的特征值为0,0,6,则A一3E的特征值为一3,一3,3,(A一3E)
6
的3个特征值都是3
6
. 于是(A一3E)
6
~3
6
E=>(A一3E)
6
=3
6
E.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/G8r4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x—y|k(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
反常积分
求不定积分
积分()
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.甲、乙两人任选一人,由此人射击,目标已被击中,求是甲击中的概率.
设A,B为三阶矩阵,且AB=A—B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设{un},{cn}为正项数列,证明:
设P(A)>0,P(B)>0,将下列四个数:P(A),P(AB),P(A∪B),P(A)+P(B),按由小到大的顺序排列,用符号≤联系它们,并指出在什么情况下可能有等式成立.
随机试题
舆论
免疫细胞间的相互调节作用发生在免疫应答的哪一阶段()
测量骶耻外径时,背部的位置相当于()
蒋某经营一大型百货公司,某日几人找到蒋某,愿意将一批走私进来的手机、手表和化妆品放在该公司销售,销售所得五五分成。蒋某与合伙人商量后答应了代为销售这些赃物,最后获利50万元全部用于百货公司的修葺。下列说法正确的是:()
在分析公司的股权融资时通常会使用到资本资产定价模型(或证券市场线),该模型综合了
价值比率法中的市盈率倍数法主要适用于()的评估。
工艺方案的出发点是()。
与人的生命有共同外延并已扩展到社会各个方面的连续性教育是______。
在一个基于TCP/IP协议的网络中,每台主机都有会有一个IP地址(如:Internet)。Inter-net上的每台主机都有一个惟一的IP地址,根据获得IP址的方式不同,可以分为静态IP,动态IP。例如:用宽带入网,一定会有一个固定的IP地址,每次连入I
Dairyfarmsand______farmingformeatandwoolarethemostimportantindustriesinNewZealand.
最新回复
(
0
)