首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,3)T线性表出. (Ⅰ)求a1,a2,a3,a4应满足的条件; (Ⅱ)求向量组α1,α2,α3,α4的
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,3)T线性表出. (Ⅰ)求a1,a2,a3,a4应满足的条件; (Ⅱ)求向量组α1,α2,α3,α4的
admin
2015-04-30
80
问题
已知向量β=(a
1
,a
2
,a
3
,a
4
)
T
可以由α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,—1,—3)
T
,α
4
=(0,0,3,3)
T
线性表出.
(Ⅰ)求a
1
,a
2
,a
3
,a
4
应满足的条件;
(Ⅱ)求向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并把其他向量用该极大线性无关组线性表出;
(Ⅲ)把向量β分别用α
1
,α
2
,α
3
,α
4
和它的极大线性无关组线性表出.
选项
答案
(Ⅰ)β可由α
1
,α
2
,α
3
,α
4
线性表出,即方程组x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β有解.对 增广矩阵作初等行变换,有 [*] ① 所以向量β可以由α
1
,α
2
,α
3
,α
4
线性表出的充分必要条件是:α
1
—α
2
+α
3
—α
4
=0. (Ⅱ)向量组α
1
,α
2
,α
3
,α
4
的极大线性无关组是:α
1
,α
2
,α
3
,而 α
4
=一6α
1
+6α
2
—3α
3
. ② (Ⅲ)方程组①的通解是: x
1
=a
1
一a
2
+2a
3
—6t,x
2
=a
2
—2a
3
+6t,x
3
=a
3
—3t,x
4
=t,其中t为任意常数,所以β=(α
1
一a
2
+2a
3
—6t)α
1
+(a
2
—2a
3
+6t)α
2
+(a
3
—3t)α
3
+ta
4
,其中t为任意常数. 由②把α
4
代入,得 β=((a
1
一a
2
+2a
3
)α
1
+(a
2
—2a
3
)α
2
+a
3
α
3
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FybD777K
0
考研数学二
相关试题推荐
中国古代大有慷慨悲歌之士,下列词句与作者的对应关系错误的是()。
A、 B、 C、 D、 C纵观图形可发现各图形均为封闭图形,故选C。
报考博士生的条件应是最近两年的毕业研究生,思想进步,业务优秀,身体健康,年龄一般不超过四十岁,_______。填入划横线部分最恰当的一项是()。
侧向思维方法,是指利用其他领域的观念、知识或方法来寻找解决本领域某个问题的可能途径和思路的一种方式。根据上述定义,下列选项中没有运用侧向思维方法的是()。
表中所列城市2006年空气质量达到及好于二级的天数占全年的比重最高是( )表中所列城市2006年空气中二氧化氮含量最低的三个依次是( )
以下哪个行业不属于周期性行业?()
二阶微分方程y"=e2y满足条件y(0)=0,y’(0)=1的特解是y=__________.
设g(x)>0为已知连续函数,在圆域D={(x,y)∣x2+y2≤a2(a>0)}上计算积分:其中λ,μ为正常数.
微分方程满足y(1)=-2的特解是_______.
随机试题
在酸性介质中,用KMnO4溶液滴定草酸盐溶液,滴定应()。
下列有关还原当量的穿梭,叙述错误的是
属足少阴肾经的腧穴是
蛔虫病的诊断,以下各项中最有意义的是
地骨皮含香加皮含
在编制历史文化名城保护规划时,按照相关要求,也可以根据实际需要,在历史文化街区的建设控制地带以外,划定()
某网络计划图如下图所示:下列说法正确的是( )。
A公司项目部承包了42层办公大楼的机电安装工程,工程内容包括建筑给水排水、建筑电气、通风与空调、建筑智能化、电梯等机电安装工程,合同总工期为24个月。施工中,在电线采购中,业主向A公司竭力推荐B电线生产厂的产品。A公司为了搞好和业主的关系,尽量接受业主的推
甲上市公司(以下简称“甲公司”)为A、B、C三位发起人采用募集设立方式成立的公司,依法在中小板上市;C股东为甲公司的控股股东,2012年2月,甲上市公司拟增资发行股票。(1)截至2011年12月31日,公司经审计的有关财务情况及审计情况如下:①股本总额1
A、 B、 C、 D、 C题干图形线条之间都有4个交点,选项中只有C符合这一特征。
最新回复
(
0
)