首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=αβT,其中α和β都是n维列向量,证明对正整数k, Ak=(βTα)k-1A=(tr(A))k-1A. (tr(A)是A的对角线上元素之和,称为A的迹数.)
设A=αβT,其中α和β都是n维列向量,证明对正整数k, Ak=(βTα)k-1A=(tr(A))k-1A. (tr(A)是A的对角线上元素之和,称为A的迹数.)
admin
2018-11-20
56
问题
设A=αβ
T
,其中α和β都是n维列向量,证明对正整数k,
A
k
=(β
T
α)
k-1
A=(tr(A))
k-1
A.
(tr(A)是A的对角线上元素之和,称为A的迹数.)
选项
答案
A
k
=(αβ
T
)
k
=αβ
T
αβ
T
…αβ
T
αβ
T
=α(β
T
α)(β
T
α)…(β
T
α)β
T
=(β
T
α)
k-1
A. β
T
α=a
1
b
1
+a
2
b
2
+…+a
n
b
n
,而a
1
b
1
,a
2
b
2
,…,a
n
b
n
正好是A=αβ
T
的对角线上各元素,于是β
T
α=tr(A), A
k
=(tr(A))
k-1
A.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FwW4777K
0
考研数学三
相关试题推荐
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵,
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求|A*+2E|.
设方程组AX=β有解但不唯一,(1)求a;(2)求可逆矩阵P,使得P一1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设A为n阶矩阵,且Ak=0,求(E一A)一1.
设四阶矩阵B满足BA一1=2AB+E,且A=,求矩阵B.
设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=________.
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=0,则().
n阶矩阵A经过若干次初等变换化为矩阵B,则().
设A为n阶非奇异矩阵,α是n维列向量,b为常数,证明PQ可逆的充分必要条件是αTA一1α≠b.
随机试题
正常婴儿,体重4kg,前囟1.5cm×1.0cm,后囟0.2cm,头不能竖起。该婴儿每天的热卡需要为
小剂量环磷酰胺:环孢素的作用是:
胸痹心痛的病位在()
下列选项中,属于古代对故意犯罪称谓的有()。
宏观调控:凯恩斯()
房屋租赁当事人双方的权利义务,均与合同的存续间相关。时间是合同的基本元素,因此房屋租赁合同属于()。
原型定向阶段也就是使主体掌握操作性知识(即程序性知识)的阶段。这一阶段相当于加里培林的“活动的定向阶段”。()
智力多因素论
A、 B、 C、 AHowdoyoulike...?表示“你觉得……怎么样?”,“喜欢……么?”,是在询问对方意见时常用的表达方法。这里题干询问夜班怎么样,选项(A)回答说截至目前还不错,是正确答案。(B)重复了
Whenwashisbicyclestolen?______yearsago.HowdidJohnusuallygotoschool?Hewassenttoschoolby______.
最新回复
(
0
)