首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(χ)cosχdχ=∫0πf(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
admin
2017-09-15
74
问题
设f(t)在[0,π]上连续,在(0,π)内可导,且∫
0
π
f(χ)cosχdχ=∫
0
π
f(χ)sinχdχ=0.证明:存在ξ∈(0,π),使得f′(ξ)=0.
选项
答案
令F(χ)=∫
0
χ
f(t)sintdt,因为F(0)=F(π)=0,所以存在χ
1
∈(0,π),使得 F′(χ
1
)=0,即f(χ
1
)sinχ
1
=0,又因为sinχ
1
≠0,所以f(χ
1
)=0. 设χ
1
是f(χ)在(0,π)内唯一的零点,则当χ∈(0,π)且χ≠χ
1
时,有sin(χ-χ
1
)f(χ) 恒正或恒负,于是∫
0
π
sin(χ-χ
1
)f(χ)dχ≠0. 而∫
0
π
sin(χ-χ
1
)f(χ)dχ=cosχ
1
∫
0
π
f(χ)sinχdχ-sinχ
1
∫
0
π
f(χ)cosχdχ=0,矛盾,所以f(χ)在(0,π)内至少有两个零点.不妨设f(χ
1
)=f(χ
2
)=0,χ
1
,χ
2
∈(0,π)且χ
1
<χ
2
,由罗尔中值定理,存在ξ∈(χ
1
,χ
2
)[*](0,π),使得f′(ξ)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Fok4777K
0
考研数学二
相关试题推荐
y=2x
A、 B、 C、 D、 A
求函数f(x)=x2ln(1+x)在x=0处的n阶导数f(n),(x)(n≥3).
曲线与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
微分方程yy’+y’2=0满足初始条件的特解是________.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y/(0)=3/2的解.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设D=,求Ak1+Ak2+…+Akn.
随机试题
2020年,由软件产品、信息技术服务、信息安全产品和服务、嵌入式系统软件四大业务形态构成的我国软件和信息技术服务业持续恢复,收入保持较快增长,信息技术服务加快云化发展,软件应用服务化、平台化趋势明显。2020年,软件产品实现收入22758亿元,同
碳酸盐岩是以()类矿物为主要成分的岩石。
关于支气管哮喘发作的临床表现,下列哪项不正确
下列关于深Ⅱ度烧伤的叙述,不正确的是()
膜性肾小球肾炎的主要病理特点是
下列哪项疾病不把肾脏CT检查作为首选?()
实行电算化的单位的现金日记账和银行存款日记账要求()。
如下图所示,在某DHCP客户机上捕获了6个报文,并对第5条报文进行了解析。分析图中信息并回答下列问题。该客户机获取的IP地址是【11】。
A、B、C、D、C
Forcenturies,immigrantshavecometoAmericaseekingthepromiseoflife,liberty,andthepursuitofhappiness.Somecamefl
最新回复
(
0
)