首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,证明:对于x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
设f(x)在(a,b)内可导,证明:对于x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是 f(x0)+f’(x0)(x-x0)>f(x). (*)
admin
2019-03-12
93
问题
设f(x)在(a,b)内可导,证明:对于
x,x
0
∈(a,b)且x≠x
0
时,f’(x)在(a,b)单调减少的充要条件是
f(x
0
)+f’(x
0
)(x-x
0
)>f(x). (*)
选项
答案
充分性:设(*)成立,[*]x
1
,x
2
∈(a,b)且x
1
<x
2
,则 f(x
2
)<f(x
1
)+f’(x
1
)(x
2
-x
1
),f(x
1
)<f(x
2
)+f’(x
2
)(x
1
-x
2
). 两式相加可得[f’(x
1
)-f’(x
2
)](x
2
-x
1
)>0,于是由x
1
2知f’(x
1
)>f’(x
2
),即f’(x)在(a,b)单调减少. 必要性:设f’(x)在(a,b)单调减少.对于[*]x,x
0
∈(a,b)且x≠x
0
,由微分中值定理得 f(x)-[f(x
0
)+f’(x
0
)(x-x
0
)]=[f’(ξ)-f’(x
0
)](x-x
0
)<0, 其中ξ在x与x
0
之间,即(*)成立.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FgP4777K
0
考研数学三
相关试题推荐
下列反常积分发散的是().
设z=f(χ,y)在点(1,2)处存在连续的一阶偏导数,且f(1,2)=2,f′χ(1,2)=3,f′y(1,2)=4,φ(χ)=f(χ,f(χ,2χ)).求
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1,χ∈(0,1).证明:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
设y(x)是由x2+xy+y=tan(x—y)确定的隐函数,且y(0)=0,则y"(0)=________.
设是取自同一正态总体N(μ,σ2)的两个相互独立且容量相同的简单随机样本的两个样本均值,则满足≤0.05的最小样本容量n=
设连续型随机变量X的概率密度为f(x)=已知E(X)=2,P(1<X<3)=,求:(Ⅰ)a,b,c的值;(Ⅱ)随机变量Y=eX的数学期望与方差。
设X1,…,Xn,是取自正态总体N(μ,σ2)的简单随机样本,其均值和方差分别为,S2,则下列服从自由度为n的χ2分布的随机变量是()
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m________________.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB—1。
设α=(1,0,-1)T,矩阵A=ααT,n为正整数,a为常数,则|aE-An|=_______.
随机试题
商品出库作业的一般操作程序是()
根据孟子的观点,行王道的初始标准为()
白细胞的功能是对机体止血和凝血过程起重要作用。
以下情况中,宜采用局部清查的有()。
下列关于平衡计分卡系统的表述中,正确的有()。
下列关于基尼系数的说法,不正确的是()。
身处教育实践第一线的研究者与受过专门训练的科学研究者密切协作,以教育实践中存在的某一问题作为研究对象,通过合作研究,再把研究结果应用到自身从事的教育实践中,这种研究方法是()。
进一步推进新农村建设的意义有()。
下面命令的输出结果是:DIMENSIONa(10)?a(1)
TheMWCK,_____in2004,isthecountry’sfirststate-fundedcenterformigrantworkersalthoughitisnotsopowerfulastoadvoc
最新回复
(
0
)