首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(—1,2,2,1)T。 求方程组(1)的基础解系。
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(—1,2,2,1)T。 求方程组(1)的基础解系。
admin
2019-03-23
68
问题
设四元线性方程组(1)为
又已知齐次线性方程组(2)的通解为k
1
(0,1,1,0)
T
+k
2
(—1,2,2,1)
T
。
求方程组(1)的基础解系。
选项
答案
方程组(1)的同解方程组为[*]基础解系为ξ
1
=(0,0,1,0)
T
,ξ
2
=(—1,1,0,1)
T
,故通解为k
1
(0,0,1,0)
T
+k
2
(—1,1,0,1)
T
,其中k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FXV4777K
0
考研数学二
相关试题推荐
设n阶矩阵A满足A4+2A3-5A2+2A+5E=0.证明A-2E可逆.
下列矩阵中不能相似对角化的是
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2),常数λ>0.
设f(x,y)在点O(0,0)的某邻域U内连续,且.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
求曲线y=+ln(1+ex)的渐近线方程.
随机试题
江泽民指出:“要把中国的事情办好,关键取决于我们党。只有我们党始终成为中国先进社会生产力的发展要求、中国先进文化的前进方向、中国最广大人民的根本利益的忠实代表,我们党就能永远立于不败之地,永远得到全国各族人民的衷心拥护并带领人民不断前进。”这段话充分说明(
食物链各营养级之间的生物个体数量关系可用_______金字塔来表示。
轻型阿弗他溃疡好发于角化程度较差的区域,如唇、颊、舌、龈、硬腭等部位。
关于中国药典,最正确的说法是( )
施工技术负责人负责编写()等相关施工资料。
两根梁长度、截面形状和约束条件完全相同,一根材料为钢,另一根为铝。在相同的外力作用下发生弯曲形变,二者不同之处为()。
排水固结法处理地基,当采用ψ7cm袋装砂井和塑料排水板作为竖向通道时,竖向排水通道长度主要取决于工程要求和土层情况,对以地基稳定性控制的工程,竖向排水通道深度至少应超过最危险滑动面()m。
热拌沥青混合料路面应待摊铺层自然降温至表面温度低于()后,方可开放交通。
以下关于质量控制的解释正确的是( )。
随着数字技术的发展,音频、视频的播放形式出现了革命性转变。人们很快接受了一些新形式,比如MP3、CD、DVD等。但是对于电子图书的接受并没有达到专家所预期的程度,现在仍有很大一部分读者喜欢捧着纸质出版物。纸质书籍在出版业中依然占据重要地位。因此有人说,书籍
最新回复
(
0
)