首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
admin
2018-08-22
81
问题
设A为n阶矩阵,λ
1
和λ
2
是A的两个不同的特征值.x
1
,x
2
是分别属于λ
1
和λ
2
的特征向量,试证明:x
1
+x
2
不是A的特征向量.
选项
答案
反证法 假设x
1
+x
2
是A的特征向量,则存在数λ,使得A(x
1
+x
2
)=λ(x
1
+x
2
),则 (λ-λ
1
)x
1
+(λ—λ
2
)x
2
=0. 因为λ
1
≠λ
2
,所以x
1
,x
2
线性无关,则[*]矛盾.故x
1
+x
2
不是A的特征向量.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/FFj4777K
0
考研数学二
相关试题推荐
设f(x)=∫0tanrarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=,求方程组AX=b的通解.
求微分方程y"+5y’+6y=2e-x的通解.
设ψ(x)是以2π为周期的连续函数,且φ’(x)=ψ(x),φ(0)=0.(1)求方程y’+ysinx=ψ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
函数(其中C是任意常数)对微分方程而言,()
设求实对称矩阵B,使A=B2.
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
汽艇以27(km/h)的速度,在静止的海面上行驶,现在突然关闭其动力系统,它就在静止的海面上作直线滑行,设已知水对汽艇运动的阻力与汽艇运动的速度成正比,并已知在关闭其动力后20(s)汽艇的速度降为了10.8(km/h).试问它最多能滑行多远?
设an为曲线y=xn与y=xn+1(n=1,2,…)所围区域的面积,记.求S1,S2的值.
设随机变量X在1,2,3,4四个数字中等可能取值,随机变量Y在1~X中等可能地取一整数值.(1)求(X,Y)的概率分布;(2)P{X=Y}.
随机试题
《中华人民共和国合同法》自1999年10月1日生效后,原《经济合同法》《涉外经济合同法》《技术合同法》的效力为()
侣鱼虾而友麇鹿。侣:
某女性患者,38岁。牙龈自发性出血1年半就诊。检查:舌缘、两颊黏膜多处瘀斑,患者自述平时轻微碰撞皮肤即会出现瘀斑。血常规检查:血小板计数30×109/L。下列哪种措施也可用于治疗该病()
哪一本书将胸痛称为"胸痹"()
FIDIC《施工合同条件》下,对变更估价的说法中正确的是( )。
不能保证遗产计划的可变性的做法是( )。
刺激一反应理论是由()创立的。
2007年我国参加最低生活保障人数是2001年的()。
解决人口老龄化问题,需要政府、社会和家庭共同努力。在传统中国,老人赡养在很大程度上属于子女义务,而不是政府责任。这种观念不仅会增加年青一代的负担,也会影响人力资源的最佳配置,同时有悖于以人为本的价值取向。将养老问题纳入社会统筹和政府责任范围,不仅会使老龄人
《自治领报》
最新回复
(
0
)