首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3均为3维列向量,记矩阵 A=(α1,α2,α3), B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3). 如果丨A丨=1,那么丨B丨=__________.
设α1,α2,α3均为3维列向量,记矩阵 A=(α1,α2,α3), B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3). 如果丨A丨=1,那么丨B丨=__________.
admin
2019-01-05
70
问题
设α
1
,α
2
,α
3
均为3维列向量,记矩阵
A=(α
1
,α
2
,α
3
), B=(α
1
+α
2
+α
3
,α
1
+2α
2
+4α
3
,α
1
+3α
2
+9α
3
).
如果丨A丨=1,那么丨B丨=__________.
选项
答案
2
解析
丨B丨=丨α
1
+α
2
+α
3
,α
1
+2α
2
+4α
3
,α
1
+3α
2
+9α
3
丨
=丨α
1
+α
2
+α
3
,α
2
+3α
3
,α
2
+5α
3
丨
=丨α
1
+α
2
+α
3
,α
2
+3α
3
,2α
3
丨
=2丨α
1
+α
2
+α
3
,α
2
+3α
3
,α
3
丨
=2丨α
1
+α
2
,α
2
,α
3
丨
=2丨α
1
,α
2
,α
3
丨
=2丨A丨
=2
转载请注明原文地址:https://www.kaotiyun.com/show/EqW4777K
0
考研数学三
相关试题推荐
设矩阵A=相似,求x,y;并求一个正交矩阵P,使P—1AP=A。
设幂级数anxn在(一∞,+∞)内收敛,其和函数y(x)满足y"—2xy’—4y=0,y(0)=0,y’(0)=1(Ⅰ)证明:an+2=an,n=1,2,…;(Ⅱ)求y(x)的表达式。
设f(x)=
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
设二次型f(x1,x2,x3)=x12+x22+x33+2ax1x2+2x1x3+2bx2x3的秩为1,且(0,1,一1)T是二次型矩阵的特征向量,求正交变换x=Qy,把二次型化为标准形f(x1,x2,x3);
设的解向量,且AX=α3有解.(I)求常数a,b的值.(Ⅱ)求BX=0的通解.
设平面区域D1={(x,y)||x|+|y|≤1},D2={(x,y)|x2+y2≤1},D3=则
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:
随机试题
新月体:
综合控制的方法主要有()
自中脑背部发出的脑神经是
一般资料:求助者,女性,48岁,公司职员。案例介绍:求助者的儿子在市重点中学读书,学习成绩一直非常优秀。高考前,儿子自己放弃了某名牌大学提前录取的机会,坚持参加高考,但发挥失常,只被普通院校录取。求助着非常生气,怨自己的孩子不争气,不给自己长面子
资本主义世界三大社会矛盾的存在和发展是分析和判断资本主义历史趋势的客观依据。()
欧洲最早的流浪汉小说是西班牙的_______,它对欧洲小说的发展有深远的影响。
Cultureinfluencesanindividual’shealthbeliefs,behaviours,activitiesandmedicaltreatmentoutcomes.【C1】______thesignific
查询学生选修课程成绩小于60分的学号,正确的SQL语句是______。查询成绩在70分至85分之间学生的学号、课程号和成绩,正确的SQL语句是______。
A、wascreatedbytheAmericancartoonistFelix______.B、wasdesignedbyPatSullivanintheearlytwentiethcenturyC、wasunable
Cyberia—InternetCafesEvaPascoeridestoworkonamotorbike.Herbusinesswardrobefeaturessuchitemsasblackleggings,
最新回复
(
0
)