首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是区间[0,+∞)上单调减少且非负的连续函数, 证明数列{an}的极限存在.
设f(x)是区间[0,+∞)上单调减少且非负的连续函数, 证明数列{an}的极限存在.
admin
2021-02-25
119
问题
设f(x)是区间[0,+∞)上单调减少且非负的连续函数,
证明数列{a
n
}的极限存在.
选项
答案
只须证明a
n
是单调有界数列.由题设[*] (1)有界性.[*] (2)单调性.由[*]知,{a
n
}单调减少,故{a
n
}的极限存在.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/EY84777K
0
考研数学二
相关试题推荐
已知α1,α2都是3阶矩阵A的特征向量.特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。求L的方程;
设A,b都是n阶矩阵,使得A+B可逆,证明B(A+B)-1A=A(A+B)-1B.
设f(χ)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f′(ξ)=-f(ξ)cotξ.
设函数f(μ)在(0,+∞)内具有二阶导数,且z=满足等式=0。验证f’’(μ)+=0;
已知n阶矩阵A满足(A-aE)(A-bE)=0,其中a≠b,证明A可对角化.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。求a的值;
已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex。求曲线y=f(x2)∫0xf(一t2)dt的拐点。
设f(x)在x=0的某邻域内连续,若,则f(x)在x=0处().
随机试题
关于小细胞未分化癌的说法,错误的是
患者,女,75岁。长期使用鼻饲饮食,在给予患者流质饮食时,适宜温度是
预防校正弱视最主要的措施是()
增强集团母公司的功能包括()。
经济技术开发区,耕地占用税的适用税额可以适当提高。()
根据《账户管理办法》的规定,存款人不用向开户银行提出撤销银行结算账户申请的情形有()。
A、 B、 C、 D、 D观察阴影方向,每组图中的三个小图阴影方向是一致的,故选D。
在Internet中用字符形式表示的IP地址称为()。
AnswerQuestionsbyreferringtothesynopsesoffourkindsofChinesepaintings.Note:Whenmorethanoneanswerisrequire
SomepeoplewouldsaythattheirEnglishman’shomeisnolongertheircastle;thatithasbecomehisworkshop.Thisispartly
最新回复
(
0
)