首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且 f(a)<0,f(b)<0,f(c)>0(a<c<b),证明:在(a,b)内至少有一点ξ,使得f(ξ)+f’(ξ)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且 f(a)<0,f(b)<0,f(c)>0(a<c<b),证明:在(a,b)内至少有一点ξ,使得f(ξ)+f’(ξ)=0.
admin
2022-06-04
78
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且 f(a)<0,f(b)<0,f(c)>0(a<c<b),证明:在(a,b)内至少有一点ξ,使得f(ξ)+f’(ξ)=0.
选项
答案
令F(x)=e
x
f(x)在[a,b]上连续,且F(A)<0,F(B)<0,F(C)>0.在区间[a,c]与[c,b]内使用零点定理,得存在ξ
1
∈(a,c),ξ
2
∈(c,b)使F(ξ
1
)=F(ξ
2
)=0. 又F(x)=e
x
f(x)在[ξ
1
,ξ
2
]上连续,在(ξ
1
,ξ
2
)内可导,且F(ξ
1
)=F(ξ
2
)=0.故必存在一点 ξ∈(ξ
1
,ξ
2
)[*](a,b)使F’(ξ)=0.而由 F’(x)=e
x
f(x)+e
x
f’(x)=e
x
[f(x)+f’(x)] 得 F’(ξ)=e
ξ
[f(ξ)+f’(ξ)]=0 所以存在ξ∈(a,b),使得f(ξ)+f’(ξ)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/EXR4777K
0
考研数学三
相关试题推荐
对于一切实数t,函数f(t)为连续的正函数且可导,又∫(—t)=f(t),设证明g’(x)单调增加;
设A是n阶正定矩阵,证明:|E+A|>1.
设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
aibi≠0,求A的全部特征值,并证明A可以对角化.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
随机试题
长期偿债能力的分析指标不包括()
(2009年)图5—21所示圆轴抗扭截面模量为Wp,切变模量为G,扭转变形后,圆轴表面A点处截取的单元体互相垂直的相邻边线改变了γ角,如图5—22所示。圆轴承受的扭矩T为()。
梅葆玖是()的名旦。
根据学习的定义,下列现象中属于学习的是()。
为了保护某些新开发的工业,A国政府禁止这类在国内刚刚开始研制的产品进口。但这类产品的购买者是A国几家依赖国际贸易的大公司,对该类产品的禁止进口大大提高了这几家大公司的生产成本,严重地削弱了它们在国际市场上的竞争力。以下哪项是上述议论的最恰当的推论?
甲制服不法侵害人后,为泄愤又对不法侵害人实施加害行为造成他人重伤,甲的行为属于()
有关高速缓冲存储器Cache的说法正确的是( )。
下面关于表单控件的基本操作的陈述中,不正确的是()。
排序时如果选取了多个字段,则输出结果是______。
在考生文件夹下打开文档Word.docx,按照要求完成下列操作并以该文件名(Word.docx)保存文档。北京计算机大学组织专家对《学生成绩管理系统》的需求方案进行评审,为使参会人员对会议流程和内容有一个清晰的了解,需要会议会务组提前制作一份有关
最新回复
(
0
)