首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设两个随机变量X与Y相互独立且同分布:P(X=-1)=P(y=-1)=1/2,P(X=1)=P(Y-1)=1/2,则下列各式中成立的是( ).
设两个随机变量X与Y相互独立且同分布:P(X=-1)=P(y=-1)=1/2,P(X=1)=P(Y-1)=1/2,则下列各式中成立的是( ).
admin
2019-07-12
107
问题
设两个随机变量X与Y相互独立且同分布:P(X=-1)=P(y=-1)=1/2,P(X=1)=P(Y-1)=1/2,则下列各式中成立的是( ).
选项
A、P(X=Y)=1/2
B、P(X=Y)=1
C、P(X+Y=0)=1/4
D、P(XY=1)=1/4
答案
A
解析
解一 仅(A)入选.首先要注意X与Y同分布绝不是X=Y或P(X=Y)=1.下面将随机变量表示的事件{X=Y),{X+Y}及{XY}分解为互斥事件的和事件,再求其概率.
{X=Y}={X=1,Y=1}+{X=-1,Y=-1} (两事件互斥),
{X+Y=0}={X=1,Y=-1}+{X=-1,Y=1) (两事件互斥),
{XY}=1={X=1,Y=1}+{X=-1,Y=-1} (两事件互斥).
再由两事件的独立性及互斥性,由已给的分布得到
P(X=Y)=P(X=1,Y=1)+P(X=-1,Y=-1)
=P(X=1)P(Y=1)+P(X=-1)P(Y=-1)
=2×(1/4)=1/2,
P(X+Y=0)=P(X=1,Y=-1)+P(X=-1,Y=1)
=P(X=1)P(Y=-1)+P(X=-1)P(Y=1)=1/2,
P(XY=1)=P(X=1,Y=1)+P(X=-1,Y=-1)
=P(X=1)P(Y=1)+P(X=-1)P(Y=-1)-1/2.
解二 仅(A)入选.用同一表格法求之.由题设条件易求得
故P(X=Y)=P(X=-1,Y=-1)+P(X=Y=1)=1/4+1/4=1/2,
P(X+Y=0)=P(X=-1,Y=1)+P(X=1,Y=-1)=1/4+1/4=1/2,
P(XY=1)=P(X=-1,Y=-1)+P(X=1,Y=1)=1/4+1/4=1/2.
转载请注明原文地址:https://www.kaotiyun.com/show/ERJ4777K
0
考研数学三
相关试题推荐
[*]
设z=z(x,y)由z+ez=xy2确定,则dz=___________.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:二次型XTAX的标准形;
(2017年)已知方程在区间(0,1)内有实根,试确定常数k的取值范围。
(2004年)函数在下列哪个区间内有界?()
(2004年)设随机变量X的分布函数为F(x;α,β)=其中参数α>0,β>1。设X1,X2,…,Xn为来自总体X的简单随机样本。(Ⅰ)当α=1时,求未知参数β的矩估计量;(Ⅱ)当α=1时,求未知参数β的最大似然估计量;(Ⅲ)
(2002年)设随机变量X和Y都服从标准正态分布,则()
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设则下列选项中是A的特征向量的是()
随机试题
对于Windows7桌面上的原有的程序图标,用户可以根据需要进行增删。
求.
目前认为伤寒的发病是()
“通过工作分析可以准确地掌握企业内部职位更替、工作职责变化或人员需求变化,并进行分析,进而明确职位设置,确定职位职责与任职者要求等要素”,这是指工作分析在()方面的作用。
对于次要的会计信息,在不影响会计信息真实性和不至于误导使用者做出正确判断的前提下,可以适当合并,简化处理。()
Americanstodaydon’tplaceaveryhighvalueonintellect.Ourheroesareathletes,entertainers,andentrepreneurs,notschola
《威尼斯商人》是莎士比亚早期作品。剧本通过夏洛克与威尼斯商人安东尼奥的矛盾冲突,揭露高利贷者的残暴贪婪。安东尼奥为帮助他的朋友巴萨尼奥向鲍西娅求婚,借了夏洛克的三千块钱。夏洛克因与安东尼奥有宿怨,迫使他订了一个借约,如果不能在规定的日期和地点还钱,就要在欠
Annualcheck-upsandcompany"wellnessprogrammes"havebecomeafamiliarpartofthecorporatelandscape.【F1】Companiesarenow
若a=1,b=2,则表达式!(x=a)}‖(y=b)&&0的值是_________。
Whatisthemostfamousfootballgameeachyear?Whyaretherewhiteringsoneachendofthefootball?
最新回复
(
0
)