首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加,证明:f(x)在[0,1]上连续。
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加,证明:f(x)在[0,1]上连续。
admin
2021-11-25
56
问题
设f(x)在[0,1]上有定义,且e
x
f(x)与e
-f(x)
在[0,1]上单调增加,证明:f(x)在[0,1]上连续。
选项
答案
对任意的x
0
∈[0,1],因为e
x
f(x)与e
-f(x)
在[0,1]上单调增加, 所以当x<x
0
时,有[*],故f(x
0
)≤f(x)≤[*]f(x
0
) 令x→x
0
-
,由迫敛定理可得,f(x
0
-0)=f(x
0
) 当x>x
0
时,有[*],故[*]f(x
0
)≤f(x)≤f(x
0
) 令x→x
0
+
,由迫敛定理可得f(x
0
+0)=f(x
0
),故f(x
0
-0)=f(x
0
+0)=f(x
0
) 即f(x)在x=x
0
处连续,由x
0
的任意性可得f(x)在[0,1]上连续。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/EKy4777K
0
考研数学二
相关试题推荐
设t>0,Dt={(χ,y)|0≤χ≤y,t≤y≤1),则=_______.
设A为m×n矩阵,对于齐次线性方程组(Ⅰ)Aχ=0和(Ⅱ)ATAχ=0,必有()
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有().
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,-4,0)T,则方程组A*X=0的基础解系为().
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
把x→0+时的无穷小量排列起来,使排在后面的是前面一个的高阶无穷小,则正确的排列次序是()
设A=(α1,α2,…,αn)是实矩阵,证明ATA是对角矩阵α1,α2,…,αn两两正交.
[2017年]甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,如图1.3.5.19,实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记
设L:y=f(x)(x≥0),且当x>0时,f’(x)>0,设P(x,y)为曲线L上任意一点,已知曲线过点P的切线在y轴上的截距与[0,x]上曲线L的长度之差等于1,且f(1)=0,f’(1)=0,求f(x).
随机试题
婴儿易发生溢乳的原因是
无静差自动调速系统能保持无差稳定运行,主要是由于采用了()。
将重组DNA分子导入细胞内大量扩增的方法
第三人提供担保,债权人允许债务人转移全部或者部分债务的,必须经过担保人书面同意,否则担保人()。
下列关于销售增长率的表述正确的是()。
在其他因素不变的情况下,固定成本的降低额即是目标利润的增加额。()
按照所交易金融工具的属性,可以将金融市场分为()。
甲公司是一家国有煤矿企业,按照2013年1月1日开始实施的《中央企业负责人经营业绩考核暂行办法》对企业负责人实际经济增加值考核2016年的企业财务报表中有关资料如下:(1)平均资产合计为20000万元(其中,在建工程为3000万元,有80%符合主业规定)
根据公司法律制度的规定,公司董事会、监事会的成员可以由公司职工代表出任。下列表述中,正确的是()。
SpeakerA:Couldyoubreaka100-dollarbillforme?SpeeakerB:______
最新回复
(
0
)