首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题成立的是( ).
下列命题成立的是( ).
admin
2019-11-25
78
问题
下列命题成立的是( ).
选项
A、若f(x)在x
0
处连续,则存在δ>0,使得f(x)在|x-x
0
|<δ内连续
B、若f(x)在x
0
处可导,则存在δ>0,使得f(x)在|x-x
0
|<δ内可导
C、若f(x)在x
0
的去心邻域内可导,在x
0
处连续且
f’(x)存在,则f(x)在x
0
处可导,且f’(x
0
)=
f’(x)
D、若f(x)在x
0
的去心邻域内可导,在x
0
处连续且
f’(x)不存在,则f(x)在x
0
处不可导
答案
C
解析
设f(x)=
,显然f(x)在x=0处连续,对任意的x
0
≠0,因为
f(x)不存在,所以f(x)在x
0
处不连续,A不对,
同理f(x)在x=0处可导,对任意的x
0
≠0,因为f(x)在x
0
处不连续,所以f(x)在 x
0
处也不可导,B不对;
因为
=f’(ξ),其中ξ介于x
0
与x之间,且
f’(x)存在,所以
f’(ξ)=
f’(ξ)也存在,即f(x)在x
0
处可导且f’(x
0
)=
f’(x),选C;
令f(x)=
,显然f’(x)=
,而
f’(x)不存在,D不对.
转载请注明原文地址:https://www.kaotiyun.com/show/E1D4777K
0
考研数学三
相关试题推荐
设X和Y相互独立都服从0--1分布,且P{X=1}=P{Y=1}=0.6,试证明:U=X+Y,V=X—Y不相关,但是不独立.
对于实数x>0,定义对数函数lnx=依此定义试证:(1)=一lnx(x>0);(2)ln(xy)=lnx+lny(x>0,y>0).
设A是n阶矩阵,n维列向量α和β分别是A和AT的特征向量,特征值分别为1和2。(Ⅰ)证明βTα=0;(Ⅱ)求矩阵βαT的特征值;(Ⅲ)判断βαT是否相似于对角矩阵(要说明理由)。
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,=max(X1,…,Xn).(I)求θ的矩估计量和最大似然估计量;(Ⅱ)求常数a,b,使=bX(n)的数学期望均为θ,并求
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1—θ)2,EX=2(1—θ)(θ为未知参数).(I)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
已知总体X与Y相互独立且都服从标准正态分布,X1,…,X8和Y1,…,Y9是分别来自总体X与Y的两个简单随机样本,其均值分别为求证:服从参数为15的t分布.
设随机变量X服从n个自由度的t分布,定义tα满足P{X≤tα}=1一α(0<α<1).若已知P{|X|>x}=b(b>0),则x等于
设f(x)在点x0的某邻域内有定义,且f(x)在点x0处间断,则在点x0处必定间断的函数是()
下列命题成立的是().
设A,B均为n阶矩阵,A可逆且A~B,则下列命题中:①AB~BA;②A2~B2;③AT~BT;④A-1~B-1.正确的个数为()
随机试题
成本与费用管理应符合的基本要求有:
ThetermTriadreferstothethreerichestregionsoftheworld,theUnitedStates,theEuropeanUnionandJapanthatofferthe
InChina,itisrelativelyusualtoaskpeopletheirage,butintheWest,thisquestionisgenerallyregardedasimpolite.This
成人牙周炎的重要病原菌是
请在序号内填入相关内容:旅游名山岩石性质所在省区景观特点(1)红色沙砾岩广东省(2)华山花岗岩(3)
组织所处环境的不确定性越大,越应该采用具有内在灵活性的()。
Wearewitnessingdiminishingfaithininstitutionsofallkinds.Peopledon’ttrustthegovernment.Theydon’ttrustbanksand
A、 B、 C、 B关键词:computer电脑。
•Readthearticleaboutsupermarket.•Choosethebestsentencetofilleachofthegaps.•Foreachgap8—12,markoneletter(A—
FederalReserveChairmanBenBernankewasnamedPersonoftheYearbyTimemagazineonWednesday,【C1】______himahelpinghandas
最新回复
(
0
)