首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3). (Ⅰ)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f’’(ξ)=0.
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3). (Ⅰ)证明存在η∈(0,2),使f(η)=f(0); (Ⅱ)证明存在ξ∈(0,3),使f’’(ξ)=0.
admin
2021-01-25
78
问题
(2010年)设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3).
(Ⅰ)证明存在η∈(0,2),使f(η)=f(0);
(Ⅱ)证明存在ξ∈(0,3),使f’’(ξ)=0.
选项
答案
(Ⅰ)设F(x)=∫
0
x
f(t)dt(0≤x≤2) 则 ∫
0
2
f(x)dx=F(2)一F(0). 根据拉格朗日中值定理,存在η∈(0,2),使 F(2)一F(0)=2F’(η)=2f(η), 即 ∫
0
2
f(x)dx=2f(η). 由题设知∫
0
2
f(x)dx=2f(0),故f(η)=f(0). (Ⅱ)[*]介于f(x)在[2,3]上的最小值与最大值之间,根据连续函数的介值定理,存在ζ∈[2,3],使 [*] 由题设知[*],故f(ζ)=f(0). 由于f(0)=f(η)=f(ζ),且0<η<ζ≤3,根据罗尔定理,存在ξ
1
∈(0,η),ξ
2
∈(η,ζ),使f’(ξ
1
)=0, f’(ξ
2
)=0,从而存在ξ∈(ξ
1
,ξ
2
)[*](0,3),使得 f(ξ)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Dwx4777K
0
考研数学三
相关试题推荐
求微分方程xy’+y=xex满足y(1)=1的特解.
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为X与S2,且X~B(1,p),0<P<1.(I)试求:X的概率分布;(Ⅱ)证明:
设某种元件的使用寿命X的概率密度为f(x;θ)=其中θ>0为未知参数.又设x1,x2,…,xn是X的一组样本观测值,求参数θ的最大似然估计值.
(14年)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Aχ=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
是二维随机变量,X的边缘概率密度为在给定X=χ(0<χ<1)的条件下Y的条件概率密度为(Ⅰ)求(X,Y)的概率密度f(χ,y);(Ⅱ)求Y的边缘概率密度fY(χ);(Ⅲ)求P{X>2Y}.
[2011年]设随机变量X与Y的概率分布分别为且P(X2=Y2)=1.求二维随机变量(X,y)的概率分布;
[2012年]设二维离散型随机变量X,Y的概率分布为求cov(X-Y,Y).
已知反常积分=______.
微分方程yˊˊ-2yˊ=x2+e2x+1由待定系数法确定的特解形式(不必求出系数)是_________.
[2004年]设有以下命题:则以上命题中正确的是().
随机试题
A、Becausetheygetmorepraisefromtheirparents.B、Becausetheygetmoreemotionalsupportfromtheirparents.C、Becausethey
肝门静脉高压合并食管静脉曲张,易发生的并发症是
A.渗透压调节剂B.pH调节剂C.黏度调节剂D.抑菌剂E.增溶剂氯化钠可作为眼用溶液剂的()。
《本草纲目》是世界上第一部由国家编定颁布的药典。()
在德育过程中,教师充分利用学生的闪光点来克服他们的消极因素。这种教育方式遵循的原则是()。
“小学”
关于法律责任与法律制裁的关系,下列说法正确的是
Mostofusareneitherpilotsnorastronauts.Wearenottrainedtosteerlargehulksofsteelandgasolinewhilemanipulatings
为了在Form_Load事件过程中用Print方法在窗体上输出指定的内容,首先应执行的操作是
IntheBritishMuseumonaSundayafternoon,ancientfaceslookbackatchildrenandadultsalike.Insidetheirglasscases,pha
最新回复
(
0
)