首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(90年)设f(χ)在闭区间[0,c]上连续,其导数f′(χ)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗El中值定理证明不等式 f(a+b)≤f(a)+f(b) 其中a、b满足条件0≤a≤b≤a+b≤c.
(90年)设f(χ)在闭区间[0,c]上连续,其导数f′(χ)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗El中值定理证明不等式 f(a+b)≤f(a)+f(b) 其中a、b满足条件0≤a≤b≤a+b≤c.
admin
2021-01-25
78
问题
(90年)设f(χ)在闭区间[0,c]上连续,其导数f′(χ)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗El中值定理证明不等式
f(a+b)≤f(a)+f(b)
其中a、b满足条件0≤a≤b≤a+b≤c.
选项
答案
要证f(a+b)≤f(a)+f(b),就是要证明f(a+b)-f(a)-f(b)≤0. 又f(0)=0,所以,只要证明f(a+b)-f(a)-f(b)+f(0)≤0. 而f(a+b)-f(a)-f(b)+f(0)=[f(a+b)-f(b)]-[f(a)-f(0)] =f′(ξ
2
)a-f(ξ
1
)a=a[f′(ξ
2
)-f(ξ
1
)] 0≤ξ
1
≤a,b≤ξ
2
≤a+b 又f′(χ)单调减少,则f′(ξ
2
)≤f′(ξ
1
),从而有f(a+b)-f(a)-f(b)+f(0)≤0. 故f(a+b)≤f(a)+f(b)
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Dux4777K
0
考研数学三
相关试题推荐
(94年)设函数y=y(χ)满足条件,求广义积分∫0+∞y(χ)dχ.
(96年)考虑一元二次方程χ2+Bχ+C=0,其中B、C分别是将一枚骰子连掷两次先后出现的点数,求该方程有实根的概率P和有重根的概率q.
(14年)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Aχ=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
(2014年)设平面区域D=((x,y)|1≤x2+y2≤4,x≥0,y≥0},计算
[*]
(2010年)设二维随机变量(X,Y)的概率密度为f(x,y)=Ae-2x2+2xy-y2,-∞<x<+∞,-∞<y<+∞,求常数A及条件概率密度fY|X(y|x)。
特征根为r1=0,的特征方程所对应的三阶常系数齐次线性微分方程为_______.
曲线y=,直线x=2及x轴所围成的平面图形绕x轴旋转一周所成的旋转体体积为________。
设A,B,C是三个两两相互独立的事件,且P(ABC)=0,0<P(C)<1,则下列选项一定成立的是().
(2005年)当a取下列哪个值时,函数f(x)=2x3一9x2+12x—a恰有两个不同的零点.()
随机试题
办公自动化的理论基础是()
某电器商场,明知某冰箱有质量问题,但在销售时故意不加说明,顾客购买了有质量问题的冰箱,该行为属于()
男,60岁,脑卒中后右侧偏瘫就诊康复科,体格检查:神志清楚,言语清晰,左侧肢体活动自如。被动活动右上肢,在关节活动范围后50%范围内出现突然卡住,然后在关节活动范围的后50%均呈现最小的阻力;被动活动右下肢,在关节活动范围之末时出现突然卡住。经过康复治
健康相关行为是指
下列哪项是选择性抑制胃质子泵的药物
一脱水患儿表现为烦躁、烦渴、高热、尿少,尿比重1.028,应考虑为()
下列关于税务行政处罚权的表述中正确的是()。
迈克卡等人将复述策略、精细加工策略和组织策略统称为______。(2016.福建)
在会议结束阶段和会后,秘书部门应做好()。
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为,求:f(x)的极值.
最新回复
(
0
)