首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2019-06-28
84
问题
设A=
,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE-A|=[*]=0, 得矩阵A的特征值为λ
1
=1-a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. λ
1
=1-a时,由(1-a)E-A]X=0 得ξ
1
=[*];λ
2
=a时, 由(aE-A)X=0得考ξ
2
=[*];λ
3
=1+a时, 由[(1+a)E-A]X=0得ξ
3
=[*] [*] (2)当a=0时,λ
1
=λ
3
=1,因为r(E-A)=2,所以方程组(E-A)X一0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化. (3)当a=[*]时,λ
1
=λ
2
=[*],因为r([*]E-A)=2,所以方程组([*]E-A)X=0的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/DpV4777K
0
考研数学二
相关试题推荐
设。已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
设函数f(x)=且1+bx>0,则当f(x)在x=0处可导时,f’(0)_________
设向量组α1(2,1,1,1),α2(2,1,a,a),α3=(3,2,1,a),α4=(4,3,2,1)线性相关,且a≠1,则a=_______.
设。当实数a为何值时,方程组Ax=β有无穷多解,并求其通解。
设f(x)=求f(x)的极值.
设F(z+,y+)=0且F可微,证明:=z-χy.
一半径为R的球沉入水中,球面顶部正好与水面相切,球的密度为1,求将球从水中取出所做的功.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.(1)确定a,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
求圆x2+y2=1的一条切线,使此切线与抛物线y=x2-2所围面积取最小值,并求此最小值.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
随机试题
算法的有穷性是指算法必须能在执行有限个步骤之后终止。()
设函数z=x2+y,则dz=().
嚼槟榔引起的口腔癌最好发于
系统性红斑狼疮病人实验室可见
下列说法不正确的是()。
流水施工的组织类型有( )。
受国际金融危机冲击及经济周期变化的双重影响,我国的物价在过去两年多的时间里经历了较大的起伏。2007年CPI上涨4.8%,2008年上涨5.9%,2009年上半年下降1.1%。下表是2008年以来有关物价指数的月度同比数据:根据上述资料,回答下列问题。
财政赤字会不会引起通货膨胀,取决于()。
Ofalltheareasoflearningthemostimportantisthedevelopmentofattitudes.Emotionalreactionsaswellaslogicalthought
TheInternetisaninternationalcollectionofcomputernetworksthatallunderstandastandardsystemofaddressesandcommands
最新回复
(
0
)