首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设B是秩为2的5×4矩阵.α1=[1,1,2,3]T,α2=[一1,1,4,一1]T,α3=[5,一1,一8,9]T是齐次线性方程组BX=0的解向量.求BX=0的解空间的一个规范正交基.
设B是秩为2的5×4矩阵.α1=[1,1,2,3]T,α2=[一1,1,4,一1]T,α3=[5,一1,一8,9]T是齐次线性方程组BX=0的解向量.求BX=0的解空间的一个规范正交基.
admin
2019-04-08
54
问题
设B是秩为2的5×4矩阵.α
1
=[1,1,2,3]
T
,α
2
=[一1,1,4,一1]
T
,α
3
=[5,一1,一8,9]
T
是齐次线性方程组BX=0的解向量.求BX=0的解空间的一个规范正交基.
选项
答案
先求BX=0的解空间的一个基.因其一个基就是解空间的维数,它等于BX=0的一个基础解系所含解向量的个数:n一秩(B)=4—2=2.又因α
1
与α
2
的分量不成比例,故α
1
与α
2
线性无关,因而α
1
,α
2
为BX=0的解空间的一个基. 下面再求出其一个标准正交基,为此将线性无关的基向量α
1
,α
2
正交化,标准化.取 β
1
=α
1
=[1,1,2,3]
T
, β
2
=[*]=[一4,2,10,一6]
T
/3. 将β
1
,β
2
单位化,得到所求的解空间的一个规范正交基为 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/DJ04777K
0
考研数学一
相关试题推荐
(2017年)设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,证明:(I)方程f(x)=0在区间(0,1)内至少存在一个实根;(11)方程f(x)f(x)+[f′(x)]2=0在区间(0,1)内至少存在两个不同的实根。
(2008年)设f(x)是连续函数。(I)利用定义证明函数可导,且F′(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数。
(2005年)设函数单位向量则
证明n阶矩阵相似。
设α1=(1,2,一l,0)T,α2=(1,1,0,2)T,α3=(2,1,1,a)T,若由α1,α2,α3生成的向量空间的维数是2,则a=______。
设矩阵则A3的秩为______。
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n。
随机试题
水痘通过何种途径传播
NotAuntilsheBgottotheclassroomCshefoundthatsheDhadforgottentobringherbooks.
关于惊厥的描述哪项是错误的()
患者,女,58岁。因近日睡眠不好、头晕、有时步态不稳而就诊,发现血压高,既往曾有过高血压情况,开始进行药物治疗。在下列药物中属于降压药物的是
患者,女性,36岁。既往体健。在春节乘长途汽车回家的路上突然感到心前区发闷、呼吸困难,出汗,觉得自己就要不行了,自己不能控制自己,自己要发疯了。为此感到紧张、害怕。被紧急送到医院急诊,未做特殊处理,半小时后症状消失。患者首先最需要做的辅助检查是
下列哪项不是维护心理健康的原则
A、硼酸B、地西泮C、地高辛D、氯霉素E、磺胺新生儿酶系统不成熟能引起灰婴综合征的药品是()。
甲公司系工业企业,为增值税一般纳税人,适用增值税率为17%,营业税率为5%(不考虑与营业税相关的其他税费),所得税税率为33%,按应付税款法对所得税进行核算。销售价格为不含税的价格。按10%提取法定盈余公积,按5%提取法定公益金。年初未分配利润为80万元
下列选项中不能必然导致委托代理关系终止的是()
马克思说:“一切商品对它们的所有者是非使用价值,对它们的非所有者是使用价值。”这说明
最新回复
(
0
)