首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
曲线y=x(x—1)(2—x)与x轴所围成的图形面积可表示为( )
曲线y=x(x—1)(2—x)与x轴所围成的图形面积可表示为( )
admin
2017-12-29
78
问题
曲线y=x(x—1)(2—x)与x轴所围成的图形面积可表示为( )
选项
A、一∫
0
2
x(x一1)(2一x)dx
B、∫
0
1
x(x一1)(2 — x)dx一∫
1
2
x(x一1)(2—x)dx
C、一∫
0
1
x(x一1)(2一x)dx+∫
1
2
x(x一1)(2一x)dx
D、∫
0
2
x(x一1)(2一x)dx
答案
C
解析
由于所求平面图形在x轴上、下方各有一部分,其面积为这两部分的面积之和,所以只要考查B、C选项中的每一部分是否均为正即可,显然C正确。事实上,
S=∫
0
2
|y|dx=∫
0
2
|x(x一1)(2一x)|dx
=∫
0
1
|x(x—1)(2一x)|dx+∫
1
2
|x(x一1)(2一x)|dx
= —∫
a
2
x(x一1)(2一x)dx+∫
1
2
x(x一1)(2一x)dx。
转载请注明原文地址:https://www.kaotiyun.com/show/DGX4777K
0
考研数学三
相关试题推荐
设其中A可逆,则B-1等于()
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一(f’(x))2≥0(x∈R).若f(0)=1,证明:f(x)≥ef’(0)x(x∈R).
线性方程组则
求下列积分:
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3,α5线性表出,说明理由.
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(A)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(A)是极大值;当r(a,
微分方程(y2+1)dx=y(y一2x)曲的通解是________.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
已知三元二次型f(x1,x2,x3)=XTAX,矩阵A的对角元素之和为3,且AB+B=0,其中 (1)用正交变换将二次型化为标准形,并写出所用的坐标变换;(2)求出此二次型;(3)若β=[4,一1,0]T,求Anβ.
(87年)下列函数在其定义域内连续的是【】
随机试题
按循经诊断,在胸前“虚里”处疼痛,痛连左手臂及小指,应考虑
Insteadofresearchingandwritingtheirpapers,somestudents______.Outof300paperscheckedforfakes,______.
胆汁淤积性黄疸时,下列哪项正确
背景资料某施工单位与建设单位签订了路基工程施工承包合同,包括桥涵两座和路基填筑工程,合同工期390天,合同总价5000万元。施工前施工单位向工程师提交了施工组织设计和施工进度计划。该工程在施工过程中发生了以下事件:事件一:因地质勘探报告不详,出现图
能够进行实时套利交易的基金是()。
基金托管人的主要职责是()
请认真阅读下文,并按要求作答。草白居易
(2016·河南)尽管发展的速度可以有个别差异,会加速或延缓,但发展是不可逆的,也不可逾越。这是指学生心理发展的()
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为(-1,1,0,2)T+k(1,-1,2,0)T.β能否由α1,α2,α3线性表示?为什么?
在数据库中存储的是
最新回复
(
0
)