首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵,矩阵B=(kE+A)2,其中k为实数,求对角矩阵A,使B与A相似.并求k为何值时,B为正定矩阵.
设矩阵,矩阵B=(kE+A)2,其中k为实数,求对角矩阵A,使B与A相似.并求k为何值时,B为正定矩阵.
admin
2019-04-22
55
问题
设矩阵
,矩阵B=(kE+A)
2
,其中k为实数,求对角矩阵A,使B与A相似.并求k为何值时,B为正定矩阵.
选项
答案
矩阵A的特征多项式为[*] 由此得A的特征值λ
1
=0,λ
2
=λ
3
=2.于是矩阵kE+A的特征值为k和k+2(二重),而矩阵B=(kE+A)
2
的特征值为k
2
和(k+2)
2
(二重). 令矩阵[*]由B~A.要使矩阵B为正定矩阵,只需其特征值全大于零.因此当k≠0且k≠一2时,B为正定矩阵.
解析
本题主要考查实对称矩阵对角化的方法及正定矩阵的判定方法.由矩阵A的特征值求出B的特征值,即可判断B的正定性.另一方法是利用正交变换化A为对角矩阵,代入B可解此题.
转载请注明原文地址:https://www.kaotiyun.com/show/DCV4777K
0
考研数学二
相关试题推荐
设y=y(χ),z=z(χ)是由方程z=χf(χ+y)和F(χ,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求_______.
=______
设A为3阶正交矩阵,它的第一行第一列位置的元素是1,又设β=(1,0,0)T,则方程组AX=β的解为_______.
曲线(x-1)3=y2上点(5,8)处的切线方程是________.
设A为n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P一1AP)T属于特征值λ的特征向量是()
设f(χ)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(χ)的带拉格朗日余项的麦克劳林公式。(2)证明:存在ξ1,ξ2∈[-a,a],使得
计算二重积分(χ2+4χ+y2)dχdy,其中D是曲线(χ2+y2)2=a2(χ2-y2)围成的区域.
求由曲线y=4-χ与χ轴围成的部分绕直线χ=3旋转一周所成的几何体的体积.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3,且α1+α2=,α2+α3=,则方程组AX=b的通解为_______.
1/2这里Z是X和Y的函数,跟通常不同,这里是分段函数.要考虑X与Z的独立性,先要确定X和Z的边缘分布,X的边缘分布是已知,因而需要确定的是Z的边缘分布,然后要求X和Z的联合分布.P{Z=1}=P{X+Y为偶数}=P{X=1,Y=1}+P{X
随机试题
Task2A.theguardianofthefamilyhealthB.stockinguponfoodsandgiftsC.returnonthefirstdayoftheNewYearD.
A.翼上颌切迹B.翼缘区C.后堤区D.磨牙后垫的1/3~1/2E.软硬腭交界处稍后的软腭上下颌远中游离端的局部义齿,其基托后缘应覆盖
继发性免疫缺陷病的特点中错误的是
单位在开展清产核资时,一般不是()。
杨某与远亲宋某签订一份协议,约定由杨某实际出资并享有投资权益,而以宋某为名义股东。合同不存在法律规定的无效情形。后来宋某见投资权益有利可图,于是向法院提起诉讼主张合同无效,下列说法中符合法律规定的是()。
学校美术活动教学开设的基本组织形式是()。
卫星:航拍
Therainsentallthefarmerswhowereworkinginthefields______forshelter.
Westartedburningsomeleavesinouryard,butthefiregot______andwehadtocallthefirebrigadetoputitout.
Atpresentcompaniesandindustriesliketosponsorsportsevents.Tworeasonsareputforwardtoexplainthisphenomenon.Thef
最新回复
(
0
)