首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,Am=0,证明E-A可逆.
设A是n阶矩阵,Am=0,证明E-A可逆.
admin
2018-06-27
57
问题
设A是n阶矩阵,A
m
=0,证明E-A可逆.
选项
答案
由A
m
=0,有E-A
m
=E.于是 (E-A)(E+A+A
2
+…+A
m-1
)=E-A
m
=E. 所以E-A可逆,且(E-A)
-1
=E+A+A
2
+…+A
m-1
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/D4k4777K
0
考研数学二
相关试题推荐
设f(x)在x=0处存在2阶导数,且f(0)=0,f’(0)=0,f’’(0)≠0.则()
(I)设k为正整数,证明F(x)存在唯一的零点,记为xk;(Ⅱ)证明存在,且其极限值小于2.
设其中E是n阶单位阵,α=[a1,a2,…,an]T≠0.计算A2,并求A-1;
如图,正方形{(z,y)||x|≤1,|y|≤1}被其对角线划分为四个区域Dk(k=1,2,3,4),Ik==
因为二次型xTAx经正交变换化为标准形时,标准形中平方项的系数就是二次型矩阵A的特征值,所以6,0,0是A的特征值,又因为∑aii=∑λi,所以a+a+a=6+0+0→a=2.
此题用分块积分法,如图所示[*]
因为x→0+时,[*]所以[*]注解该题考查等价无穷小求极限的方法,当x→0常用的等价无穷小有:(1)x~sinx~tanx~arcsinx~arctanx~ex-1~ln(1+x);(2)1-cosx~,1-cosax~(3)(1+x)a-1~a
设f(x)在区间[a,b]上连续,且f(x)>0,则函数在(a,b)内的零点个数为()
设f(x0)≠0,f(x)在x=x0连续,则f(x)在x0可导是|f(x)|在x0可导的()条件.
设f(x0)≠0,f(x)在x=x0连续,则f(x)在x0可导是|f(x)|在x0可导的()条件.
随机试题
禁食早期每日静脉给予葡萄糖,其主要作用是()
A.癌性溃疡B.十二指肠球后溃疡C.复合溃疡D.胃多发溃疡E.幽门管溃疡溃疡不规则,底部污秽,凸凹不平,胃酸缺乏的是()。
《特种设备安全监察条例》所称特种设备安全监督管理部门,是指()。
为完成建设工程施工,发生于该工程施工前和施工过程中的技术、生活、安全、环境保护等方面的费用称为()
下列属于广义资产证券化的有()。
在以下的画家中,最善于描绘女性,笔下的女性异常优美两位画家是()。
国务院各部委制定的规章可以设定的行政处罚范围是()。(易错)
万某因出国留学将自己的红星商贸有限公司委托陈某管理,并授权陈某在10万元以内的开支和100万元以内的交易可以自行决定,假设若第三人对此授权不知情,则陈某受托期间实施行为无效的是()。
A.It’sabouttheoralpresentationB.it’sworthonequarterofyourfinalgradeC.Itcan’tbejuststagefrightProfessor:
地理环境是怎样影响人类社会的?
最新回复
(
0
)