首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3 (Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值; (Ⅲ)求可逆矩阵P,使得P
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3 (Ⅰ)求矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B; (Ⅱ)求矩阵A的特征值; (Ⅲ)求可逆矩阵P,使得P
admin
2020-03-16
78
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
(Ⅰ)求矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B;
(Ⅱ)求矩阵A的特征值;
(Ⅲ)求可逆矩阵P,使得P
一1
AP为对角矩阵.
选项
答案
(Ⅰ)由题设条件,有 A(α
1
,α
2
,α
3
)=(Aα
1
,Aα
2
,Aα
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
) =(α
1
,α
2
,α
3
)[*] 所以,[*] (Ⅱ)因为α
1
,α
2
,α
3
是线性无关的三维列向量,可知矩阵C=(α
1
,α
2
,α
3
)可逆,所以由AC=CB,得C
一1
AC=B,即矩阵A与B相似.由此可得矩阵A与B有相同的特征值, 由|λE 一B|=[*]=(λ一1)
2
(λ一4)=0 得矩阵B的特征值,也即矩阵A的特征值为λ
1
一λ
2
=1,λ
3
=4. (Ⅲ)对应于λ
1
=λ
2
=1,解齐次线性方程组(E一B)x=0,得基础解系 ξ
1
=(一1,1,0)
T
,ξ
2
=(一2,0,1)
T
; 对应于λ
3
=4,解齐次线性方程组(4E一B)x=0,得基础解系ξ
3
=(0,1,1)
T
. 令矩阵 Q= (ξ
1
,ξ
2
,ξ
3
)=[*] 则有 Q
一1
BQ=[*] 因Q
一1
BQ=Q
一1
C
一1
ACQ=(CQ)
一1
A(CQ),记矩阵 P= CQ=(α
1
,α
2
,α
3
)[*] =(一α
1
+α
2
,一 2α
1
+α
3
,α
2
+α
3
) 则有P
一1
AP=Q
一1
BQ=diag(1,1,4),为对角矩阵,故P为所求的可逆矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Cz84777K
0
考研数学二
相关试题推荐
[2011年]一容器的内侧是由图1.3.5.14中曲线绕y轴旋转一周而成的曲面,该曲面由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成.若将容器内盛满的水从容器顶点全部抽出至少需要做多少功?(长度单位为m,重力加速度为g
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用的结果判断矩阵B一CTA一1C是否为正定矩阵,并证明结论。
求方程y(4)一y"=0的一个特解,使其在x→0时与x3为等价无穷小.
设f(x)在[0,+∞)上连续,0<a<b,且收敛,其中常数A>0.试证明:
求极限:
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求常数a;
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
设矩阵行列式|A|=一1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值.
函数f(x)=的无穷间断点的个数是()
设求a,b及正交矩阵P,使得PTAP=B.
随机试题
13岁的林林,母亲因病去世3年了,父亲经常酗酒抽大麻。有一次,父亲在家里喝得醉醺醺的,并端着一杯白酒强行灌到林林口中,还嚷嚷着让女儿陪他一起吃喝玩乐。情急之中,林林跑出家门,打电话向警察和学校老师求助。警察带走了父亲,学校社会工作者也把林林带走送到集体宿舍
关于租金说法不正确的是()。
如图所示,在赤平极射投影图上的结构面NMS的走向是:
关于钢结构铆钉连接,说法正确的是()。
根据以下材料,回答下列题目:一位养老基金管理人正在考虑投资三种共同基金。第一种是股票基金,第二种是长期政府债券与公司债券基金,第三种是收益率为8%的短期国库券货币市场基金。这些风险基金的概率分布如表5-4所示。基金的收益率之间的相关系数为0.10。
在其他条件一定的情况下,若(),则劳动力需求的自身工资弹性就越小。
如果被害人或证人拒绝人身检查,而侦查人员又认为有必要检查时,可以强制检查。()
青春期个体自我意识迅速发展的具体表现有
设S(x)=∫0x|cost|dt.(1)证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);(2)求
Expertsinthefoodindustryarethinkingalotabouttrashthesedays.Foodwastehasbeenaseriousproblemforrestaurantsan
最新回复
(
0
)