首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶方阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2, 试证: r(A)=2;
设3阶方阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2, 试证: r(A)=2;
admin
2021-02-25
79
问题
设3阶方阵A=(α
1
,α
2
,α
3
)有3个不同的特征值,且α
3
=α
1
+2α
2
,
试证:
r(A)=2;
选项
答案
由于α
3
=α
1
+2α
2
知r(A)<3,所以0是A的一个特征值,又由于A的3个特征值各不相同,故A可对角化,且A有两个非零特征值,从而r(A)=2.所以Ax=0的基础解系只有一个线性无关的解向量.
解析
本题考查向量组线性相关和矩阵特征值的概念和性质,矩阵相似对角化的条件以及非齐次线性方程组通解的结构.
转载请注明原文地址:https://www.kaotiyun.com/show/CZ84777K
0
考研数学二
相关试题推荐
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
下列矩阵中,正定矩阵是()
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中r(α1,α2,α3)=2,r(β1,β2,β3,β4)>1,并且每个βi与α1,α2,α3都正交.则r(β1,β2,β3,β4)=
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
(1997年)已知且A2-AB=I,其中I是3阶单位矩阵。求矩阵B.
[2002年]已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵.(1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
设三阶矩阵A的特征值为λ1=-1,λ2=,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=________
随机试题
不孕症妇女应用促排卵药物,首选
下列哪项不属于上消化道出血的部位
进行城市规划调查时,自然环境的调查涉及到的因素有:
下列房间内部所有装修均应采用A级装修材料的有()。
进口货物报关单有若干联,下列报关单中属于报关单的基本联的是()。
【2015光大银行】假设某一年基础货币为1000亿元,原始存款为500亿元,派生存款为300亿元,货币乘数为1.2,则货币供应量为()亿元。
根据《基金会管理条例》,对基金会注销后剩余财产的下列处置措施中,正确的是()。
杨女士于今年1月怀孕,3月份不慎流产。根据《女职工劳动保护特别规定》,杨女士可享受的产假天数为()。
众鸟高飞尽,_______。_______,只有敬亭山。(唐.李白《独坐敬亭山》)
ShortagesoffluvaccinearenothingnewinAmerica,butthisyear’sisawhopper.Untillastweek,itappearedthat100million
最新回复
(
0
)