首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)服从均匀分布,其联合概率密度函数为 求Z=X—Y的概率密度函数.
设二维随机变量(X,Y)服从均匀分布,其联合概率密度函数为 求Z=X—Y的概率密度函数.
admin
2016-11-03
75
问题
设二维随机变量(X,Y)服从均匀分布,其联合概率密度函数为
求Z=X—Y的概率密度函数.
选项
答案
Z=X—Y的分布函数为 F
z
(z)=P(Z≤z)=P(X—Y≤z)=[*]f(x,y)dxdy. 因随着z的取值范围不同,区域x—y≤z与f(x,y)的取值非零的区域即正方形区域0≤x≤2,0≤y≤2相交的情况不一样,需分别讨论.因f(x,y)取非零值的定义域的边界点为(0,0),(0,2),(2,2),(2,0),相应地,z=x—y的可能取值为z=0—0=0,z=0—2=-2,z=2—2=0,z=2—0=2.因而z应分下述情况分别求出分布函数:(1)z<-2,(2)一2≤x<0,(3)0≤z<2,(4)z≥2. (1)当z<-2时,区域x—y<z(这时当x=0时,一y<一2,即y>2)与正方形0≤x≤2,0≤y≤2没有公共部分(参见下图),所以 [*] F
z
(z)=[*]0dxdy=0. (2)当一2≤z<0时(这时当x=0时,则一2≤x—y=一y≤0,即0≤y≤2),区域x—y≤z与正方形0≤x≤2,0≤y≤2的公共部分如下图阴影区域所示,则 [*] [*] (3)当0≤z<2时,区域x一y<z与正方形区域0≤x≤2,0≤y≤2的公共部分如下图阴影部分所示,故 [*] [*] (4)当z≥2时,x一y=z≥2,当x=0时,y=-2,当y=0时,x≥2,因而区域x—y<z在x—y=z的上方,它包含整个正方形区域(参见下图),故 [*] F
z
(z)=[*]dy=1. 综上得到 [*] 故 [*]
解析
求二维随机变量(X,Y)函数(尤其是其线性函数)的分布函数常利用其定义求之.求时需对X—Y≤z中z的不同取值情况分别确定f(x,y)不为0的区域与{(x,y)|x—y≤z}的交集.在此交集上进行二重积分,求出分布函数,再求导,即可求得概率密度函数.
转载请注明原文地址:https://www.kaotiyun.com/show/CTu4777K
0
考研数学一
相关试题推荐
[*]
a=-3/2
设随机变量X的绝对值不大于1,P(X=1)=1/4,P(X=-1)=1/8,而在事件{-1
被积函数的分子与分母同乘以一个适当的因式,往往可以使不定积分容易求,用这种方法求下列不定积分:
设f(x)可导,求下列函数的导数:
用指定的变量替换法求:
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
计算曲面积分2x3dydz+2y3dzdx+3(z2-1)dxdy,其中∑是曲面z=1-x2-y2(z≥0)的上侧.
(2008年试题,19)将函数f(x)=1—x2(0≤x≤π)展开成余弦形式的傅里叶级数,并求的和.
计算曲面积分I=,其中∑是曲面2x2+2y2+z2=4的外侧。
随机试题
国际货币基金组织的职能有________、________、________、________、________。
夸美纽斯在《大教学论》中提出了()。
一项研究表明,那些在舒适环境里工作的人比在不舒适环境里工作的人生产效率高25%。评价工作绩效的客观标准包括承办工件数和工件的复杂程度。这表明:日益改善的工作环境可以提高工人的生产效率。以下哪项为真,最能削弱上述结论?()
甲于1992年3月5日犯A罪,该罪的法定最高刑为10年,1996年11月21日甲又犯B罪,B罪的法定最高刑为7年,那么A罪的追诉期限的结束时间应为()。
What’saman?Or,indeed,awoman?Biologically,theanswermightseemobvious.Ahumanbeingisa(n)【C1】______whohasgrownfr
若没有特殊声明,匿名FTP服务登录口令为()。
In1995about700,000robotswereoperatingintheindustrializedworld.Over500,000wereusedinJapan,about120,000inWe
NOTJUSTASHOP!Inhisyearlyreport,theChairmanofachainofretailoutletswritesaboutthefinancialaspectsofthe
TheLondonCentreForyourmeeting,productlaunch,specialeventPurpose-builtroomsLatestpresentationtechnologyFirst-class
A、Neitherofthemlikethewriter.B、BothofthemlikeEllaFitzgerald.C、Oneofthemiscrazyaboutwriting.D、ThemanlikesFi
最新回复
(
0
)