首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
admin
2017-09-07
60
问题
设A为4×3矩阵,η
1
,η
2
,η
3
是非齐次线性方程组Ax=β的3个线性无关的解,k
1
,k
2
为任意常数,则Ax=β的通解为
选项
A、(η
2
+η
3
)/2+k
1
(η
2
-η
1
)
B、(η
2
-η
3
)/2+k
1
(η
2
-η
1
)
C、(η
2
+η
3
)/2+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
)
D、(η
2
-η
3
)/2+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
)
答案
C
解析
分析一 因为η
1
,η
2
,η
3
足Ax=β的3个线性无关的解,那么η
2
-η
1
,η
3
-η
1
是Ax=0的2个线性无关的解.从而n-r(A)≥2,即3-r(A)≥2 r(A)≤1.
显然r(A)≥l,凶此r(A)=1.
由n-r(A)=3-1=2,知(A)、(B)均不正确.
又A(η
2
+η
3
)/2=1/2η
2
+1/2Aη
3
=β,故1/2(η
2
+η
3
)是方程组Ax=β的解.所以应选(C),
注意:1/2(η
2
+η
3
)是齐次方程组Ax=0的解.
分析二 用排除法(η
2
+η
3
)/2三是齐次线性方程组Ax=0的解,所以可排除选项(B),(D);又η
2
-η
1
,η
3
-η
1
线性无关,所以Ax=0的基础解系至少包含2个解向量,从而可排除选项(A).因此应选(C).
转载请注明原文地址:https://www.kaotiyun.com/show/CCr4777K
0
考研数学一
相关试题推荐
设,则x→0时f(x)是g(x)的
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T,(Ⅰ)若α1,α2,α3线性相关,求a的值;(Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4;(Ⅲ)当a=3时,证明α1,
设为某函数的全微分,则a为().
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设总体X的密度函数为,求参数θ的矩估计量和最大似然估计量.
设A,B为两个随机事件,则=_________.
以y=C1e-2x+C2ex+cosx为通解的二阶常系数非齐次线性微分方程为________。
Ω是由x2+y2一z2与x=a(a>0)所围成的区域,则三重积分在柱面坐标系下累次积分的形式为()
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(一1)=0,f(1)=1,f’(0)=0.证明:在[-1,1]内存在ξ,使得f’’’(ξ)=3.
求下列行列式的值:
随机试题
尽职型是()职业道德的境界。
下述相关肝炎的描述不正确的是
下列固定桥中哪一类不属于特殊结构固定桥
所有的企业或投资项目都有相同的系统性风险。()
国家税务总局可以通过规章的形式设定警告和罚款,但罚款有最高数额限制,超过限额的应报国务院批准。()
我国商业银行最主要的信贷资金来源是()。
给定资料1.伴随人口增加、经济发展和城市化进程加快,水资源短缺、水环境污染、水生态受损情况触目惊心,水安全正在成为新时期经济社会发展的基础性、全局性和战略性问题。现实是沉重的——全国657个城市中,有300多个属于联合国人居署评价标准的“严重缺
(2017年真题)下列选项中,应认定为故意伤害罪的是()。
Seeingnobodyintheclassroom,hedecidedtostaythere(read)______forawhile.
Whatdoesthepassagemainlydiscuss?AccordingtoStavrosDimas,what’sthepurposeofimposingextrachargesonallairlines
最新回复
(
0
)