首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有 |f(x1)一f(x2)|<.
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有 |f(x1)一f(x2)|<.
admin
2017-10-23
98
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于
x
1
,x
2
∈[0,1],有
|f(x
1
)一f(x
2
)|<
.
选项
答案
联系f(x
1
)—f(x
2
)与f’(x)的是拉格朗日中值定理.不妨设0≤x
1
≤x
2
≤1.分两种情形: 1)若x
2
一x
1
<[*],直接用拉格朗日中值定理得 |f(x
1
)一f(x
2
)|=|f’(ξ)(x
2
一x
1
)|=|f’(ξ)||x
2
一x
1
|<[*]. 2)若x
2
一x
1
≥[*],当0<x
1
<x
2
<1时,利用条件f(0)=f(1)分别在[0,x
1
]与[x
2
,1]上用拉格朗日中值定理知存在ξ∈(0,x
1
),η∈(x
2
,1)使得 |f(x
1
)一f(x
2
)|=|[f(x
1
)一f(0)]一[f(x
2
)一f(1)]| ≤|f(x
1
)一f(0)|+|f(1)一f(x
2
)| =|f’(ξ)x
1
|+|f’(η)(1一x
2
)| <x
1
+(1一x
2
)=1一(x
2
一x
1
)≤[*], ①当x
1
=0且x
2
≥[*]时,有 |f(x
1
)一f(x
2
)|=|f(0)一f(x
2
)|=|f(1)一f(x
2
)|=|f’(η)(1一x
2
)|<[*]. ②当x
1
≤[*]且x
2
=1时,同样有 |x(x
1
)一f(x
2
)|=|f(x
1
)一f(1)|=|f(x
1
)一f(0)|=|f’(ξ)(x
1
一0)|<[*]. 因此对于任何x
1
,x
2
∈[0,1]总有 |f(x
1
)一f(x
2
)|<[*].
解析
转载请注明原文地址:https://www.kaotiyun.com/show/BsX4777K
0
考研数学三
相关试题推荐
设b>a>0,证明:
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
设f(x)为奇函数,且f’(1)=2,则=__________.
求,其中D:x2+y2≤π2.
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(x)dx=g(ξ)∫aξf(x)dx.
设f(x)连续,证明:
证明:
随机试题
房屋征收是物权变动的一种特殊的情形,是国家取得使用权的一种方式。()
《中华人民共和国文物保护法》规定,全国重点文物保护单位需要在原址重建的,由()报国务院批准。
工程立面图绘制中,一般规定用()绘制建筑最外轮廓线。
()等行为明显违反了银行业从业人员职业操守中监管规避的准则。
某生产企业,2012年有关会计资料如下:(1)年度会计利润总额为300万元;(2)全年销售收入为3000万元;(3)“管理费用”中列支的业务招待费30元,广告费和业务宣传费500万元;(4)“营业外支出”中列支的税收罚款1
青岛位于山东半岛,在山东的经济地位处于前茅,对全国的影响力较强。作为一个沿海的旅游城市,酒店业比较发达,数量众多。但整体管理水平并不高,很多酒店目前还都处于手工操作的阶段。部分客户对酒店管理系统持有排斥态度,认为没有必要在这块进行投资。但随着市场环境的变化
Contrabandarticles
当x>0时,为()
在客户机/服务器工作模式中,客户机可以使用【】向数据库服务器发送查询命令。
Inmanycountriesintheprocessofindustrialization,overcrowdedcitiespresentamajorproblem.Poorconditionsintheseciti
最新回复
(
0
)