首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶不可逆矩阵,α1,α2是Ax=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
设A是3阶不可逆矩阵,α1,α2是Ax=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
admin
2018-06-27
99
问题
设A是3阶不可逆矩阵,α
1
,α
2
是Ax=0的基础解系,α
3
是属于特征值λ=1的特征向量,下列不是A的特征向量的是
选项
A、α
1
+3α
2
.
B、α
1
-α
2
.
C、α
1
+α
3
.
D、2α
3
.
答案
C
解析
Aα
1
=0,Aα
2
=0,Aα
3
=α
3
.则A(α
1
+3α
2
)=0,A(α
1
-α
2
)=0,A(2α
3
)=2α
3
.
因此(A),(B),(D)都正确.
A(α
1
+α
3
)=α
3
,和α
1
+α
3
不相关,因此α
1
+α
3
不是特征向量,故应选(C).
转载请注明原文地址:https://www.kaotiyun.com/show/Bik4777K
0
考研数学二
相关试题推荐
设A是4×3矩阵,且A的秩r(A)=2,而B=,则r(AB)=________.
设a>1,f(t)=at-at在(-∞,+∞)内的驻点为t(a).问a为何值时,t(a)最小?并求出最小值.
设函数f(f)在[0,+∞)上连续,且满足方程,求f(t).
已知53求A的特征值与特征向量,并指出A可以相似对角化的条件.
没A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
a=一5是齐次方程组有非零解的
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
因为二次型xTAx经正交变换化为标准形时,标准形中平方项的系数就是二次型矩阵A的特征值,所以6,0,0是A的特征值,又因为∑aii=∑λi,所以a+a+a=6+0+0→a=2.
用正交变换法化二次型f(x1,x2,x3)=x12+x2x2+x3x2-4x1x2-4x1x3-4x2x3为标准二次型
随机试题
A______amountoftimeandmoneywaswastedintheproject,forwhichhewasfired.
硬脑膜窦有哪些?其血流方向如何?
A.使君子、苦楝根皮B.川楝子、白芍C.榧子、槟榔D.人参、当归乌梅丸在加减应用时治疗心下疼热甚者应加
自然界最常见的单核苷酸是
关于IT系统应符合的基本要求,下列哪项叙述错误?()
按照资产流动性,我国目前将货币量划分为三个层次,其中,包括流通中现金的是( )。
关于个人合伙,下列说法正确的是()
关于洗钱罪的认定,下列选项错误的是
已知三元二次型xTAx经正交变换化为2y12—y22—y32,又知A*α=α,其中α=(1,1,一1)T,求此二次型的表达式.
FreeStatinsWithFastFoodCouldNeutralizeHeartRiskFastfoodoutletscouldprovidestatindrugsfreeof【C1】______sotha
最新回复
(
0
)