首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2019-05-11
87
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性: a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此(a
1
,a
2
,…,a
n
)=n。对任一n维向量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关。 综上所述r(a
1
,a
2
,…,a
n
,b)=n。 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示。 充分性: 已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ξ
1
,ξ
2
,…,ξ
n
可由a
1
,a
2
,…,a
n
线性表示,即 r(ξ
1
,ξ
2
,…,ξ
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组凡维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/B8V4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,a]上连续可导,且f(a)=f(b)=0.证明:|f(χ)|≤∫ab|f′(χ)|dχ(a<χ<b).
设an=tannχdχ(n≥2),证明:
设f(χ)在[0,1]上连续,f(0)=0,∫01f(χ)dχ=0.证明:存在ξ∈(0,1),使得∫0ξ=f(χ)dχ=ξf(ξ).
证明:当0<χ<1时,e-2χ>
a,b取何值时,方程组有解?
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
微分方程y〞-y′-6y=(χ+1)e-2χ的特解形式为().
微分方程y"-4y’=x2+cos2x的特解形式为().
随机试题
下列是类风湿关节炎关节受累特点的是
系统的稳定性与其传递函数的特征方程根的关系为()。
下列关于支票的用途说法正确的是()。
()与参与者签署的债券回购主协议是确认债券回购交易确立的合同文件。
下列投资项目评价指标中,考虑了资金时间价值因素的有()。
纳税人已售票但客户逾期未消费取得的运输逾期票证收入()。
澳大利亚:骑在羊背上
下列语句中,最通顺、恰当的一句是()。
不能够解释红绿色盲的颜色视觉理论的是()。
已知AB=A—B,证明:A,B满足乘法交换律。
最新回复
(
0
)